File size: 10,064 Bytes
f641099
 
8a42096
f641099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dcef70
 
 
 
 
8a42096
 
 
 
 
 
 
 
 
f641099
 
 
8a42096
60d2f28
 
f641099
2724ad2
8a42096
2724ad2
 
1dcef70
 
f641099
8a42096
f641099
 
 
 
60d2f28
f641099
 
 
 
60d2f28
 
 
 
 
 
f641099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d2f28
f641099
 
 
 
 
60d2f28
f641099
 
 
 
 
60d2f28
 
 
f641099
 
 
 
60d2f28
f641099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d2f28
 
 
 
 
 
f641099
 
 
 
 
 
 
 
 
 
60d2f28
f641099
 
 
 
 
60d2f28
f641099
 
 
 
 
60d2f28
 
 
f641099
 
 
60d2f28
 
 
 
f641099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d2f28
 
 
 
 
 
f641099
 
 
 
 
 
 
 
 
 
60d2f28
f641099
 
 
 
 
60d2f28
f641099
 
 
 
 
60d2f28
 
 
f641099
 
 
60d2f28
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
from logging_config import logger
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, BitsAndBytesConfig
from PIL import Image
from fastapi import HTTPException

# Device setup
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
TORCH_DTYPE = torch.bfloat16 if DEVICE != "cpu" else torch.float32

class LLMManager:
    def __init__(self, model_name: str, device: str = DEVICE):
        self.model_name = model_name
        self.device = torch.device(device)
        self.torch_dtype = TORCH_DTYPE
        self.model = None
        self.is_loaded = False
        self.processor = None
        self.token_cache = {}
        logger.info(f"LLMManager initialized with model {model_name} on {self.device}")

    def unload(self):
        if self.is_loaded:
            del self.model
            del self.processor
            if self.device.type == "cuda":
                torch.cuda.empty_cache()
                logger.info(f"GPU memory allocated after unload: {torch.cuda.memory_allocated()}")
            self.is_loaded = False
            logger.info(f"LLM {self.model_name} unloaded from {self.device}")

    def load(self):
        if not self.is_loaded:
            try:
                # Enable TF32 for better performance on supported GPUs
                if self.device.type == "cuda":
                    torch.set_float32_matmul_precision('high')
                    logger.info("Enabled TF32 matrix multiplication for improved performance")

                # Configure 4-bit quantization
                quantization_config = BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_quant_type="nf4",  # NF4 (Normal Float 4) is optimized for LLMs
                    bnb_4bit_compute_dtype=self.torch_dtype,  # Use bfloat16 for computations
                    bnb_4bit_use_double_quant=True  # Nested quantization for better accuracy
                )

                # Load model with 4-bit quantization
                self.model = Gemma3ForConditionalGeneration.from_pretrained(
                    self.model_name,
                    device_map="auto",
                    quantization_config=quantization_config,
                    torch_dtype=self.torch_dtype,
                    max_memory={0: "10GiB"}  # Adjust based on your GPU capacity
                ).eval()

                # Move model to device (handled by device_map, but explicit for clarity)
                self.model.to(self.device)

                # Load processor with use_fast=True for faster tokenization
                self.processor = AutoProcessor.from_pretrained(self.model_name, use_fast=True)
                self.is_loaded = True
                logger.info(f"LLM {self.model_name} loaded on {self.device} with 4-bit quantization and fast processor")
            except Exception as e:
                logger.error(f"Failed to load model: {str(e)}")
                raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}")

    async def generate(self, prompt: str, max_tokens: int = 50) -> str:
        if not self.is_loaded:
            self.load()

        cache_key = f"system_prompt_{prompt}"
        if cache_key in self.token_cache and "response" in self.token_cache[cache_key]:
            logger.info("Using cached response")
            return self.token_cache[cache_key]["response"]

        if cache_key in self.token_cache and "inputs" in self.token_cache[cache_key]:
            inputs_vlm = self.token_cache[cache_key]["inputs"]
            logger.info("Using cached tokenized input")
        else:
            messages_vlm = [
                {
                    "role": "system",
                    "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]
                },
                {
                    "role": "user",
                    "content": [{"type": "text", "text": prompt}]
                }
            ]
            try:
                inputs_vlm = self.processor.apply_chat_template(
                    messages_vlm,
                    add_generation_prompt=True,
                    tokenize=True,
                    return_dict=True,
                    return_tensors="pt"
                ).to(self.device, dtype=torch.bfloat16)
                self.token_cache[cache_key] = {"inputs": inputs_vlm}
            except Exception as e:
                logger.error(f"Error in tokenization: {str(e)}")
                raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}")

        input_len = inputs_vlm["input_ids"].shape[-1]
        adjusted_max_tokens = min(max_tokens, max(20, input_len * 2))

        with torch.inference_mode():
            generation = self.model.generate(
                **inputs_vlm,
                max_new_tokens=adjusted_max_tokens,
                do_sample=True,
                top_p=0.9,
                temperature=0.7
            )
            generation = generation[0][input_len:]

        response = self.processor.decode(generation, skip_special_tokens=True)
        self.token_cache[cache_key]["response"] = response  # Cache the full response
        logger.info(f"Generated response: {response}")
        return response

    async def vision_query(self, image: Image.Image, query: str) -> str:
        if not self.is_loaded:
            self.load()

        messages_vlm = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in one sentence maximum."}]
            },
            {
                "role": "user",
                "content": [{"type": "text", "text": query}] + ([{"type": "image", "image": image}] if image else [])
            }
        ]

        cache_key = f"vision_{query}_{'image' if image else 'no_image'}"
        if cache_key in self.token_cache and "response" in self.token_cache[cache_key]:
            logger.info("Using cached response")
            return self.token_cache[cache_key]["response"]

        if cache_key in self.token_cache and "inputs" in self.token_cache[cache_key]:
            inputs_vlm = self.token_cache[cache_key]["inputs"]
            logger.info("Using cached tokenized input")
        else:
            try:
                inputs_vlm = self.processor.apply_chat_template(
                    messages_vlm,
                    add_generation_prompt=True,
                    tokenize=True,
                    return_dict=True,
                    return_tensors="pt"
                ).to(self.device, dtype=torch.bfloat16)
                self.token_cache[cache_key] = {"inputs": inputs_vlm}
            except Exception as e:
                logger.error(f"Error in apply_chat_template: {str(e)}")
                raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")

        input_len = inputs_vlm["input_ids"].shape[-1]
        adjusted_max_tokens = min(50, max(20, input_len * 2))

        with torch.inference_mode():
            generation = self.model.generate(
                **inputs_vlm,
                max_new_tokens=adjusted_max_tokens,
                do_sample=True,
                top_p=0.9,
                temperature=0.7
            )
            generation = generation[0][input_len:]

        response = self.processor.decode(generation, skip_special_tokens=True)
        self.token_cache[cache_key]["response"] = response  # Cache the full response
        logger.info(f"Vision query response: {response}")
        return response

    async def chat_v2(self, image: Image.Image, query: str) -> str:
        if not self.is_loaded:
            self.load()

        messages_vlm = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state."}]
            },
            {
                "role": "user",
                "content": [{"type": "text", "text": query}] + ([{"type": "image", "image": image}] if image else [])
            }
        ]

        cache_key = f"chat_v2_{query}_{'image' if image else 'no_image'}"
        if cache_key in self.token_cache and "response" in self.token_cache[cache_key]:
            logger.info("Using cached response")
            return self.token_cache[cache_key]["response"]

        if cache_key in self.token_cache and "inputs" in self.token_cache[cache_key]:
            inputs_vlm = self.token_cache[cache_key]["inputs"]
            logger.info("Using cached tokenized input")
        else:
            try:
                inputs_vlm = self.processor.apply_chat_template(
                    messages_vlm,
                    add_generation_prompt=True,
                    tokenize=True,
                    return_dict=True,
                    return_tensors="pt"
                ).to(self.device, dtype=torch.bfloat16)
                self.token_cache[cache_key] = {"inputs": inputs_vlm}
            except Exception as e:
                logger.error(f"Error in apply_chat_template: {str(e)}")
                raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")

        input_len = inputs_vlm["input_ids"].shape[-1]
        adjusted_max_tokens = min(50, max(20, input_len * 2))

        with torch.inference_mode():
            generation = self.model.generate(
                **inputs_vlm,
                max_new_tokens=adjusted_max_tokens,
                do_sample=True,
                top_p=0.9,
                temperature=0.7
            )
            generation = generation[0][input_len:]

        response = self.processor.decode(generation, skip_special_tokens=True)
        self.token_cache[cache_key]["response"] = response  # Cache the full response
        logger.info(f"Chat_v2 response: {response}")
        return response