File size: 17,424 Bytes
68ed2d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b880d1ed-3db0-45a1-807e-1b47e9ce1320",
   "metadata": {},
   "outputs": [],
   "source": [
    "! pip install faiss-cpu, mistralai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "id": "851612c3-ee93-42e3-a1fb-481f89c9410f",
   "metadata": {},
   "outputs": [],
   "source": [
    "from mistralai.client import MistralClient, ChatMessage\n",
    "import requests\n",
    "import numpy as np\n",
    "import faiss\n",
    "import os\n",
    "\n",
    "api_key=os.environ[\"MISTRAL_API_KEY\"]\n",
    "client = MistralClient(api_key=api_key)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "01b27964-b40f-41d5-ba20-cec93ca25dc5",
   "metadata": {},
   "source": [
    "# 1. RAG from scratch"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fe8609d5-9f27-4202-b0be-36db34412998",
   "metadata": {},
   "source": [
    "## Get data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "c4c01740-72b4-482c-b61e-e272a734f01f",
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.get('https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt')\n",
    "text = response.text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 130,
   "id": "f03f47af-a20b-4122-a114-74b9748ff543",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "75014"
      ]
     },
     "execution_count": 130,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(text)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aad1aa61-9e1c-46c8-ae5e-61855df440f9",
   "metadata": {},
   "source": [
    "## Split document into chunks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "8494655e-bd87-49de-8f1d-69ffbc1c256e",
   "metadata": {},
   "outputs": [],
   "source": [
    "chunk_size = 512\n",
    "chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4176cbe3-9b15-4d17-afb1-665011d09bb7",
   "metadata": {},
   "source": [
    "## Create embeddings for each text chunk"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "e77d9805-7a53-4210-9f80-f4de52285588",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_text_embedding(input):\n",
    "    embeddings_batch_response = client.embeddings(\n",
    "          model=\"mistral-embed\",\n",
    "          input=input\n",
    "      )\n",
    "    return embeddings_batch_response.data[0].embedding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "46503830-6ad5-493e-a629-152721e2d88e",
   "metadata": {},
   "outputs": [],
   "source": [
    "text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "ca875993-fe6d-42df-811e-a43891cd0350",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(147, 1024)"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text_embeddings.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "55396758-c3f3-45b3-b6e7-d4912c0899f2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[-0.04849243,  0.07305908,  0.01568604, ..., -0.0234375 ,\n",
       "        -0.02072144, -0.01068115],\n",
       "       [-0.04660034,  0.04846191, -0.00045729, ..., -0.00754929,\n",
       "        -0.00577545,  0.01355743],\n",
       "       [-0.02139282,  0.0625    ,  0.00907898, ..., -0.02233887,\n",
       "        -0.00765228, -0.00793457],\n",
       "       ...,\n",
       "       [-0.02787781,  0.04260254,  0.00785828, ..., -0.00067568,\n",
       "        -0.01176453, -0.02828979],\n",
       "       [-0.02966309,  0.06292725,  0.03979492, ..., -0.01296997,\n",
       "        -0.00264549, -0.03845215],\n",
       "       [-0.06185913,  0.05847168,  0.03988647, ..., -0.04724121,\n",
       "        -0.01289368, -0.02728271]])"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text_embeddings"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1cba33c7-9d1d-44d8-a01e-e30f16be1aac",
   "metadata": {},
   "source": [
    "## Load into a vector database"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "6a5b1877-b113-4527-9055-cae9049fef08",
   "metadata": {},
   "outputs": [],
   "source": [
    "d = text_embeddings.shape[1]\n",
    "index = faiss.IndexFlatL2(d)\n",
    "index.add(text_embeddings)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5ee023ab-b26c-4df5-8a7b-7dd660bfad86",
   "metadata": {},
   "source": [
    "## Create embeddings for a question"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "894d9764-9da9-4629-8f2a-c9dcaf6ceb8d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1, 1024)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "question = \"What were the two main things the author worked on before college?\"\n",
    "question_embeddings = np.array([get_text_embedding(question)])\n",
    "question_embeddings.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "9c4948cc-6d8b-449f-bc00-abb3591c7222",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[-0.05456543,  0.03518677,  0.03723145, ..., -0.02763367,\n",
       "        -0.00327873,  0.00323677]])"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "question_embeddings"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "15989e10-d0ec-41be-b6be-fa317565a926",
   "metadata": {},
   "source": [
    "## Retrieve similar chunks from the vector database"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "c930b378-7aac-434c-881b-ab69d3edb93d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[ 0 90]]\n"
     ]
    }
   ],
   "source": [
    "D, I = index.search(question_embeddings, k=2) \n",
    "print(I)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "id": "73aab584-1dbf-4532-b41e-0403eeeeb567",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['\\n\\nWhat I Worked On\\n\\nFebruary 2021\\n\\nBefore college the two main things I worked on, outside of school, were writing and programming. I didn\\'t write essays. I wrote what beginning writers were supposed to write then, and probably still are: short stories. My stories were awful. They had hardly any plot, just characters with strong feelings, which I imagined made them deep.\\n\\nThe first programs I tried writing were on the IBM 1401 that our school district used for what was then called \"data processing.\" This wa', \"king on things that aren't prestigious doesn't guarantee you're on the right track, it at least guarantees you're not on the most common type of wrong one.\\n\\nOver the next several years I wrote lots of essays about all kinds of different topics. O'Reilly reprinted a collection of them as a book, called Hackers & Painters after one of the essays in it. I also worked on spam filters, and did some more painting. I used to have dinners for a group of friends every thursday night, which taught me how to cook for \"]\n"
     ]
    }
   ],
   "source": [
    "retrieved_chunk = [chunks[i] for i in I.tolist()[0]]\n",
    "print(retrieved_chunk)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b417a59-021a-411d-a491-cb31815192cd",
   "metadata": {},
   "source": [
    "## Combine context and question in a prompt and generate response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "da042a53-4564-4057-9a60-9b57dffff6a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = f\"\"\"\n",
    "Context information is below.\n",
    "---------------------\n",
    "{retrieved_chunk}\n",
    "---------------------\n",
    "Given the context information and not prior knowledge, answer the query.\n",
    "Query: {question}\n",
    "Answer:\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "id": "e77d975b-5f69-4e9c-8b94-97214517eac7",
   "metadata": {},
   "outputs": [],
   "source": [
    "def run_mistral(user_message, model=\"mistral-medium\"):\n",
    "    messages = [\n",
    "        ChatMessage(role=\"user\", content=user_message)\n",
    "    ]\n",
    "    chat_response = client.chat(\n",
    "        model=model,\n",
    "        messages=messages,\n",
    "        temperature=1, \n",
    "        # max_tokens=100\n",
    "    )\n",
    "    return (chat_response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "id": "1c5c20aa-6673-4105-9c10-886a1e18da8a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'The two main things the author worked on before college were writing and programming. Specifically, the author wrote short stories and tried writing programs on an IBM 1401.'"
      ]
     },
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "run_mistral(prompt)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4e3b531c-4730-4108-ae8a-8de6563e085b",
   "metadata": {},
   "source": [
    "# 2. LlamaIndex"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "152c2a1e-9564-459c-9ea9-5208da519a90",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install llama-index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "id": "96003762-acac-4886-964b-2d6a67f6f724",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2024-01-16 18:40:06--  https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.108.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 75042 (73K) [text/plain]\n",
      "Saving to: ‘pg_essay.txt’\n",
      "\n",
      "pg_essay.txt        100%[===================>]  73,28K  --.-KB/s    in 0,01s   \n",
      "\n",
      "2024-01-16 18:40:07 (5,45 MB/s) - ‘pg_essay.txt’ saved [75042/75042]\n",
      "\n",
      "The two main things the author worked on before college, outside of school, were writing and programming. In terms of writing, they wrote short stories, which they described as having hardly any plot and mainly featuring characters with strong feelings. As for programming, they tried writing programs on an IBM 1401 in 9th grade using an early version of Fortran. They typed programs on punch cards and stacked them in the card reader to load the program into memory and run it. However, they couldn't figure out what to do with the 1401 and didn't have any data stored on punched cards, so they didn't do much with it.\n"
     ]
    }
   ],
   "source": [
    "from llama_index import VectorStoreIndex, SimpleDirectoryReader\n",
    "from llama_index.llms import MistralAI\n",
    "from llama_index.embeddings import MistralAIEmbedding\n",
    "from llama_index import ServiceContext\n",
    "from llama_index.query_engine import RetrieverQueryEngine\n",
    "\n",
    "# Load data\n",
    "!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt' -O pg_essay.txt\n",
    "reader = SimpleDirectoryReader(input_files=[\"pg_essay.txt\"])\n",
    "documents = reader.load_data()\n",
    "# Define LLM and embedding model \n",
    "llm = MistralAI(api_key=api_key,model=\"mistral-medium\")\n",
    "embed_model = MistralAIEmbedding(model_name='mistral-embed', api_key=api_key)\n",
    "service_context = ServiceContext.from_defaults(llm=llm,embed_model=embed_model)\n",
    "# Create vector store index \n",
    "index = VectorStoreIndex.from_documents(documents, service_context=service_context)\n",
    "# Create query engine\n",
    "query_engine = index.as_query_engine(similarity_top_k=2)\n",
    "response = query_engine.query(\n",
    "    \"What were the two main things the author worked on before college?\"\n",
    ")\n",
    "print(str(response))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3c8f1701-897f-43ff-8101-6ec503995e23",
   "metadata": {},
   "source": [
    "# 3. LangChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "edcb2ef1-f7aa-4b49-96a6-850cda03bf6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "! pip install langchain, langchain_mistralai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 134,
   "id": "2e9a4f96-7bcf-452d-85b8-fe89990a5dbc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2024-01-19 17:46:24--  https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.111.133, 185.199.110.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 75042 (73K) [text/plain]\n",
      "Saving to: ‘pg_essay.txt’\n",
      "\n",
      "pg_essay.txt        100%[===================>]  73,28K  --.-KB/s    in 0,009s  \n",
      "\n",
      "2024-01-19 17:46:25 (7,57 MB/s) - ‘pg_essay.txt’ saved [75042/75042]\n",
      "\n",
      "The two main things the author worked on before college were writing and programming. Specifically, they wrote short stories and created spam filters, and they also did some painting.\n"
     ]
    }
   ],
   "source": [
    "from langchain_community.document_loaders import TextLoader\n",
    "from langchain_mistralai.chat_models import ChatMistralAI\n",
    "from langchain_mistralai.embeddings import MistralAIEmbeddings\n",
    "from langchain_community.vectorstores import FAISS\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from langchain.chains.combine_documents import create_stuff_documents_chain\n",
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "from langchain.chains import create_retrieval_chain\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "\n",
    "!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt' -O pg_essay.txt\n",
    "loader = TextLoader(\"pg_essay.txt\")\n",
    "docs = loader.load()\n",
    "\n",
    "# text_splitter = RecursiveCharacterTextSplitter()\n",
    "text_splitter = CharacterTextSplitter(\n",
    "    separator=\"\\n\\n\",\n",
    "    chunk_size=500,\n",
    "    chunk_overlap=200,\n",
    "    length_function=len,\n",
    "    is_separator_regex=False,\n",
    ")\n",
    "documents = text_splitter.split_documents(docs)\n",
    "\n",
    "# Our embedding model doesnt work :( \n",
    "# embeddings = MistralAIEmbeddings(model=\"mistral-embed\", mistral_api_key=api_key)\n",
    "import os\n",
    "embeddings = OpenAIEmbeddings()\n",
    "\n",
    "\n",
    "vector = FAISS.from_documents(documents, embeddings)\n",
    "retriever = vector.as_retriever()\n",
    "model = ChatMistralAI(mistral_api_key=api_key)\n",
    "\n",
    "prompt = ChatPromptTemplate.from_template(\"\"\"Answer the following question based only on the provided context:\n",
    "\n",
    "<context>\n",
    "{context}\n",
    "</context>\n",
    "\n",
    "Question: {input}\"\"\")\n",
    "\n",
    "document_chain = create_stuff_documents_chain(model, prompt)\n",
    "retriever = vector.as_retriever()\n",
    "retrieval_chain = create_retrieval_chain(retriever, document_chain)\n",
    "response = retrieval_chain.invoke({\"input\": \"What were the two main things the author worked on before college?\"})\n",
    "print(response[\"answer\"])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ec63c4a9-9c04-4707-a92f-e339b14054fd",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}