Spaces:
Sleeping
Sleeping
ionosphere
commited on
Commit
β’
4c8c543
1
Parent(s):
835ee70
Add api key in env for user, change model to small
Browse files
app.py
CHANGED
@@ -7,45 +7,49 @@ from llama_index.embeddings import MistralAIEmbedding
|
|
7 |
from llama_index import ServiceContext
|
8 |
from llama_index.query_engine import RetrieverQueryEngine
|
9 |
|
10 |
-
|
11 |
-
description = "Example of an assistant with Gradio and Mistral AI via its API"
|
12 |
-
placeholder = "
|
13 |
placeholder_url = "Extract text from this url"
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
query_engine = None
|
17 |
|
18 |
with gr.Blocks() as demo:
|
19 |
|
20 |
gr.Markdown(""" ### Welcome to Gaia Level 2 Demo
|
21 |
-
Add an URL
|
|
|
|
|
22 |
""")
|
23 |
chatbot = gr.Chatbot()
|
24 |
msg = gr.Textbox()
|
25 |
clear = gr.ClearButton([msg, chatbot])
|
26 |
|
27 |
-
with gr.Row():
|
28 |
-
api_key_text_box = gr.Textbox(placeholder=placeholder_api_key, container=False, scale=7)
|
29 |
|
30 |
-
def setup_with_url(url
|
31 |
global query_engine
|
|
|
32 |
# Set-up clients
|
33 |
-
llm = MistralAI(api_key=
|
34 |
-
embed_model = MistralAIEmbedding(model_name='mistral-embed', api_key=
|
35 |
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embed_model)
|
36 |
|
37 |
# Set-up db
|
38 |
documents = SimpleWebPageReader(html_to_text=True).load_data([url])
|
39 |
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
40 |
query_engine = index.as_query_engine(similarity_top_k=15)
|
41 |
-
return
|
42 |
|
43 |
with gr.Row():
|
44 |
url_msg = gr.Textbox(placeholder=placeholder_url, container=False, scale=7)
|
45 |
url_btn = gr.Button(value="Set-up API and process url β
", interactive=True)
|
46 |
-
url_btn.click(setup_with_url, [url_msg
|
47 |
-
|
48 |
-
|
49 |
|
50 |
def respond(message, chat_history):
|
51 |
response = query_engine.query(message)
|
@@ -54,4 +58,6 @@ with gr.Blocks() as demo:
|
|
54 |
|
55 |
msg.submit(respond, [msg, chatbot], [chatbot])
|
56 |
|
|
|
|
|
57 |
demo.launch()
|
|
|
7 |
from llama_index import ServiceContext
|
8 |
from llama_index.query_engine import RetrieverQueryEngine
|
9 |
|
10 |
+
title = "Gaia Mistral Chat RAG URL Demo"
|
11 |
+
description = "Example of an assistant with Gradio, RAG from url and Mistral AI via its API"
|
12 |
+
placeholder = "Posez moi une question sur l'agriculture"
|
13 |
placeholder_url = "Extract text from this url"
|
14 |
+
llm_model = 'mistral-small'
|
15 |
+
# choose api_key from .env or from input field
|
16 |
+
# placeholder_api_key = "API key"
|
17 |
+
env_api_key = os.environ.get("MISTRAL_API_KEY")
|
18 |
|
19 |
query_engine = None
|
20 |
|
21 |
with gr.Blocks() as demo:
|
22 |
|
23 |
gr.Markdown(""" ### Welcome to Gaia Level 2 Demo
|
24 |
+
Add an URL at the bottom of the interface before interacting with the Chat.
|
25 |
+
This demo allows you to interact with a webpage and then ask questions to Mistral APIs.
|
26 |
+
Mistral will answer with the context extracted from the webpage.
|
27 |
""")
|
28 |
chatbot = gr.Chatbot()
|
29 |
msg = gr.Textbox()
|
30 |
clear = gr.ClearButton([msg, chatbot])
|
31 |
|
32 |
+
# with gr.Row():
|
33 |
+
# api_key_text_box = gr.Textbox(placeholder=placeholder_api_key, container=False, scale=7)
|
34 |
|
35 |
+
def setup_with_url(url):
|
36 |
global query_engine
|
37 |
+
|
38 |
# Set-up clients
|
39 |
+
llm = MistralAI(api_key=env_api_key,model=llm_model)
|
40 |
+
embed_model = MistralAIEmbedding(model_name='mistral-embed', api_key=env_api_key)
|
41 |
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embed_model)
|
42 |
|
43 |
# Set-up db
|
44 |
documents = SimpleWebPageReader(html_to_text=True).load_data([url])
|
45 |
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
46 |
query_engine = index.as_query_engine(similarity_top_k=15)
|
47 |
+
return placeholder
|
48 |
|
49 |
with gr.Row():
|
50 |
url_msg = gr.Textbox(placeholder=placeholder_url, container=False, scale=7)
|
51 |
url_btn = gr.Button(value="Set-up API and process url β
", interactive=True)
|
52 |
+
url_btn.click(setup_with_url, [url_msg], msg, show_progress= "full")
|
|
|
|
|
53 |
|
54 |
def respond(message, chat_history):
|
55 |
response = query_engine.query(message)
|
|
|
58 |
|
59 |
msg.submit(respond, [msg, chatbot], [chatbot])
|
60 |
|
61 |
+
demo.title = title
|
62 |
+
|
63 |
demo.launch()
|