File size: 4,063 Bytes
70b87af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import json
import gradio as gr
from llama_index.core import (
    VectorStoreIndex,
    download_loader,
    StorageContext
)
from dotenv import load_dotenv, find_dotenv

import chromadb

from llama_index.llms.mistralai import MistralAI
from llama_index.embeddings.mistralai import MistralAIEmbedding
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core.indices.service_context import ServiceContext

TITLE = "RIZOA-AUCHAN Chatbot Demo"
DESCRIPTION = "Example of an assistant with Gradio, coupling with function calling and Mistral AI via its API"
PLACEHOLDER = (
    "Vous pouvez me posez une question sur ce contexte, appuyer sur Entrée pour valider"
)
PLACEHOLDER_URL = "Extract text from this url"
llm_model = "mistral-medium"

load_dotenv()
env_api_key = os.environ.get("MISTRAL_API_KEY")
query_engine = None

# Define LLMs
llm = MistralAI(api_key=env_api_key, model=llm_model)
embed_model = MistralAIEmbedding(model_name="mistral-embed", api_key=env_api_key)

# create client and a new collection
db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")

# set up ChromaVectorStore and load in data
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
service_context = ServiceContext.from_defaults(
    chunk_size=1024, llm=llm, embed_model=embed_model
)

PDFReader = download_loader("PDFReader")
loader = PDFReader()

index = VectorStoreIndex(
    [], service_context=service_context, storage_context=storage_context
)
query_engine = index.as_query_engine(similarity_top_k=5)

with gr.Blocks() as demo:
    with gr.Row(): 
        with gr.Column(scale=1): 
            gr.Image(value=".\img\logo_rizoa_auchan.jpg", 
                    height=250,
                    width=250,
                    container=False, 
                    show_download_button=False
                    )
        with gr.Column(scale=4):   
            gr.Markdown(
                """ 
                # Bienvenue au Chatbot FAIR-PLAI 
                
                Ce chatbot est un assistant numérique, médiateur des vendeurs-acheteurs
                """
            )

    # gr.Markdown(""" ### 1 / Extract data from PDF """)

    # with gr.Row():
    #     with gr.Column():
    #         input_file = gr.File(
    #             label="Load a pdf",
    #             file_types=[".pdf"],
    #             file_count="single",
    #             type="filepath",
    #             interactive=True,
    #         )
    #         file_msg = gr.Textbox(
    #             label="Loaded documents:", container=False, visible=False
    #         )

    #         input_file.upload(
    #             fn=load_document,
    #             inputs=[
    #                 input_file,
    #             ],
    #             outputs=[file_msg],
    #             concurrency_limit=20,
    #         )

    #         file_btn = gr.Button(value="Encode file ✅", interactive=True)
    #         btn_msg = gr.Textbox(container=False, visible=False)

    #         with gr.Row():
    #             db_list = gr.Markdown(value=get_documents_in_db)
    #             delete_btn = gr.Button(value="Empty db 🗑️", interactive=True, scale=0)

    #         file_btn.click(
    #             load_file,
    #             inputs=[input_file],
    #             outputs=[file_msg, btn_msg, db_list],
    #             show_progress="full",
    #         )
    #         delete_btn.click(empty_db, outputs=[db_list], show_progress="minimal")

    gr.Markdown(""" ### Ask a question """)

    chatbot = gr.Chatbot()
    msg = gr.Textbox(placeholder=PLACEHOLDER)
    clear = gr.ClearButton([msg, chatbot])

    def respond(message, chat_history):
        response = query_engine.query(message)
        chat_history.append((message, str(response)))
        return chat_history

    msg.submit(respond, [msg, chatbot], [chatbot])

demo.title = TITLE

if __name__ == "__main__":
    demo.launch()