Spaces:
Runtime error
Runtime error
from flask import Flask, request, jsonify | |
from transformers import AutoProcessor, SeamlessM4Tv2Model | |
import numpy as np | |
import wave | |
import os | |
from huggingface_hub import InferenceClient, login | |
app = Flask(__name__) | |
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large" ) | |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
UPLOAD_FOLDER = "audio_files" | |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) | |
def return_text(): | |
return jsonify({"text": "Hello, world!"}) | |
def record_audio(): | |
file = request.files['audio'] | |
filename = os.path.join(UPLOAD_FOLDER, file.filename) | |
file.save(filename) | |
# Charger et traiter l'audio | |
audio_data, orig_freq = torchaudio.load(filename) | |
audio_inputs = processor(audios=audio_data, return_tensors="pt") | |
output_tokens = model.generate(**audio_inputs, tgt_lang="fra", generate_speech=False) | |
translated_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True) | |
return jsonify({"translated_text": translated_text}) | |
def text_to_speech(): | |
data = request.get_json() | |
text = data.get("text") | |
src_lang = data.get("src_lang") | |
tgt_lang = data.get("tgt_lang") | |
text_inputs = processor(text=text, src_lang=src_lang, return_tensors="pt") | |
audio_array = model.generate(**text_inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze() | |
output_filename = os.path.join(UPLOAD_FOLDER, "output.wav") | |
with wave.open(output_filename, "wb") as wf: | |
wf.setnchannels(1) | |
wf.setsampwidth(2) | |
wf.setframerate(16000) | |
wf.writeframes((audio_array * 32767).astype(np.int16).tobytes()) | |
return jsonify({"audio_url": output_filename}) | |
if __name__ == "__main__": | |
app.run(debug=True) | |