Spaces:
Runtime error
Runtime error
test
Browse files
app.py
CHANGED
@@ -1,35 +1,50 @@
|
|
|
|
1 |
from transformers import AutoProcessor, SeamlessM4Tv2Model
|
2 |
import numpy as np
|
3 |
-
#import torchaudio
|
4 |
import sounddevice as sd
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
|
8 |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
from transformers import AutoProcessor, SeamlessM4Tv2Model
|
3 |
import numpy as np
|
|
|
4 |
import sounddevice as sd
|
5 |
+
import wave
|
6 |
+
import os
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
|
10 |
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
|
11 |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
|
12 |
|
13 |
+
UPLOAD_FOLDER = "audio_files"
|
14 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
15 |
+
|
16 |
+
@app.route("/record", methods=["POST"])
|
17 |
+
def record_audio():
|
18 |
+
file = request.files['audio']
|
19 |
+
filename = os.path.join(UPLOAD_FOLDER, file.filename)
|
20 |
+
file.save(filename)
|
21 |
+
|
22 |
+
# Charger et traiter l'audio
|
23 |
+
audio_data, orig_freq = torchaudio.load(filename)
|
24 |
+
audio_inputs = processor(audios=audio_data, return_tensors="pt")
|
25 |
+
output_tokens = model.generate(**audio_inputs, tgt_lang="fra", generate_speech=False)
|
26 |
+
translated_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
return jsonify({"translated_text": translated_text})
|
29 |
+
|
30 |
+
@app.route("/text_to_speech", methods=["POST"])
|
31 |
+
def text_to_speech():
|
32 |
+
data = request.get_json()
|
33 |
+
text = data.get("text")
|
34 |
+
src_lang = data.get("src_lang")
|
35 |
+
tgt_lang = data.get("tgt_lang")
|
36 |
+
|
37 |
+
text_inputs = processor(text=text, src_lang=src_lang, return_tensors="pt")
|
38 |
+
audio_array = model.generate(**text_inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
|
39 |
+
|
40 |
+
output_filename = os.path.join(UPLOAD_FOLDER, "output.wav")
|
41 |
+
with wave.open(output_filename, "wb") as wf:
|
42 |
+
wf.setnchannels(1)
|
43 |
+
wf.setsampwidth(2)
|
44 |
+
wf.setframerate(16000)
|
45 |
+
wf.writeframes((audio_array * 32767).astype(np.int16).tobytes())
|
46 |
+
|
47 |
+
return jsonify({"audio_url": output_filename})
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
app.run(debug=True)
|