from flask import Flask, request, jsonify from transformers import AutoProcessor, SeamlessM4Tv2Model import numpy as np import wave import os from huggingface_hub import InferenceClient, login app = Flask(__name__) processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large" ) model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") UPLOAD_FOLDER = "audio_files" os.makedirs(UPLOAD_FOLDER, exist_ok=True) @app.route("/", methods=["GET"]) def return_text(): return jsonify({"text": "Hello, world!"}) @app.route("/record", methods=["POST"]) def record_audio(): file = request.files['audio'] filename = os.path.join(UPLOAD_FOLDER, file.filename) file.save(filename) # Charger et traiter l'audio audio_data, orig_freq = torchaudio.load(filename) audio_inputs = processor(audios=audio_data, return_tensors="pt") output_tokens = model.generate(**audio_inputs, tgt_lang="fra", generate_speech=False) translated_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True) return jsonify({"translated_text": translated_text}) @app.route("/text_to_speech", methods=["POST"]) def text_to_speech(): data = request.get_json() text = data.get("text") src_lang = data.get("src_lang") tgt_lang = data.get("tgt_lang") text_inputs = processor(text=text, src_lang=src_lang, return_tensors="pt") audio_array = model.generate(**text_inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze() output_filename = os.path.join(UPLOAD_FOLDER, "output.wav") with wave.open(output_filename, "wb") as wf: wf.setnchannels(1) wf.setsampwidth(2) wf.setframerate(16000) wf.writeframes((audio_array * 32767).astype(np.int16).tobytes()) return jsonify({"audio_url": output_filename}) if __name__ == "__main__": app.run(debug=True)