# -*- coding: utf-8 -*- """ Created on Mon Feb 24 12:03:11 2025 @author: MIPO10053340 """ #JWT from dotenv import load_dotenv load_dotenv() import os import numpy as np import pandas as pd from scipy.stats import entropy # API Clients from mistralai.client import MistralClient import openai from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # ⚙️ Configurations API (remplace par tes clés API) MISTRAL_API_KEY = os.getenv('MISTRAL_API_KEY_static') OPENAI_API_KEY = os.getenv('OPENAI_API_KEY_static') ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY_static') LLAMA_API_KEY = os.getenv('LLAMA_API_KEY_static') # 📌 Choix des modèles à utiliser USE_MODELS = { "mistral": False, "gpt-4": True, "llama": False, # Active si tu veux l'utiliser "qwen": False, "deepseek": False } # 📊 Fonction pour calculer l'entropie des réponses def calculate_entropy(text): tokens = text.split() probas = np.array([tokens.count(word) / len(tokens) for word in set(tokens)]) return entropy(probas) # 🚀 Fonction pour interroger les modèles def get_model_responses(question): responses = {} # 🔹 MISTRAL if USE_MODELS["mistral"]: mistral_client = MistralClient(api_key=MISTRAL_API_KEY) messages = [{"role": "user", "content": question}] response = mistral_client.chat(model="mistral-medium", messages=messages) text_response = response.choices[0].message.content responses["mistral"] = {"response": text_response, "entropy": calculate_entropy(text_response)} # 🔹 GPT-4 (OpenAI) if USE_MODELS["gpt-4"]: # openai>=1.0.0 client = openai.OpenAI(api_key=OPENAI_API_KEY) response = client.chat.completions.create( model="gpt-4", messages=[{"role": "user", "content": question}] ) text_response = response.choices[0].message.content responses["gpt-4"] = {"response": text_response, "entropy": calculate_entropy(text_response)} # 🔹 LLAMA (Hugging Face) if USE_MODELS["llama"]: model_id = "meta-llama/Llama-2-7b-chat-hf" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) text_response = pipe(question, max_length=300)[0]["generated_text"] responses["llama"] = {"response": text_response, "entropy": calculate_entropy(text_response)} # 🔹 QWEN (Hugging Face) if USE_MODELS["qwen"]: model_id = "Qwen/Qwen-7B-Chat" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) text_response = pipe(question, max_length=300)[0]["generated_text"] responses["qwen"] = {"response": text_response, "entropy": calculate_entropy(text_response)} # 🔹 DEEPSEEK (Hugging Face) if USE_MODELS["deepseek"]: model_id = "deepseek-ai/deepseek-7b-chat" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) text_response = pipe(question, max_length=300)[0]["generated_text"] responses["deepseek"] = {"response": text_response, "entropy": calculate_entropy(text_response)} return responses # 📌 Question de test question = "Quels sont les besoins en protéines des poulets de chair en phase de croissance ?" # 🔥 Exécuter le test results = get_model_responses(question) # 📊 Afficher les résultats df = pd.DataFrame.from_dict(results, orient="index") print(df) # 💾 Sauvegarde en .txt with open("model_responses.txt", "w", encoding="utf-8") as f: for model, data in results.items(): f.write(f"🔹 Modèle : {model.upper()}\n") f.write(f"Réponse :\n{data['response']}\n") f.write(f"📊 Entropie : {data['entropy']:.4f}\n") f.write("=" * 50 + "\n\n") print("\n✅ Réponses enregistrées dans 'model_responses.txt'")