Spaces:
Running
Running
# Author: Alexander Riedel | |
# License: Unlicensed | |
# Link: https://github.com/alexriedel1/detectron2-GradCAM | |
from plots.gradcam.gradcam import GradCAM, GradCamPlusPlus | |
import detectron2.data.transforms as T | |
import torch | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from detectron2.data.detection_utils import read_image | |
from detectron2.modeling import build_model | |
from detectron2.data.datasets import register_coco_instances | |
class Detectron2GradCAM(): | |
""" | |
Attributes | |
---------- | |
config_file : str | |
detectron2 model config file path | |
cfg_list : list | |
List of additional model configurations | |
root_dir : str [optional] | |
directory of coco.josn and dataset images for custom dataset registration | |
custom_dataset : str [optional] | |
Name of the custom dataset to register | |
""" | |
def __init__(self, config_file, cfg_list, root_dir=None, custom_dataset=None): | |
# load config from file | |
cfg = get_cfg() | |
cfg.merge_from_file(config_file) | |
if custom_dataset: | |
register_coco_instances(custom_dataset, {}, root_dir + "coco.json", root_dir) | |
cfg.DATASETS.TRAIN = (custom_dataset,) | |
MetadataCatalog.get(custom_dataset) | |
DatasetCatalog.get(custom_dataset) | |
if torch.cuda.is_available(): | |
cfg.MODEL.DEVICE = "cuda" | |
else: | |
cfg.MODEL.DEVICE = "cpu" | |
cfg.merge_from_list(cfg_list) | |
cfg.freeze() | |
self.cfg = cfg | |
def _get_input_dict(self, original_image): | |
height, width = original_image.shape[:2] | |
transform_gen = T.ResizeShortestEdge( | |
[self.cfg.INPUT.MIN_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TEST], self.cfg.INPUT.MAX_SIZE_TEST | |
) | |
image = transform_gen.get_transform(original_image).apply_image(original_image) | |
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)).requires_grad_(True) | |
inputs = {"image": image, "height": height, "width": width} | |
return inputs | |
def get_cam(self, img, target_instance, layer_name, grad_cam_type="GradCAM"): | |
""" | |
Calls the GradCAM++ instance | |
Parameters | |
---------- | |
img : str | |
Path to inference image | |
target_instance : int | |
The target instance index | |
layer_name : str | |
Convolutional layer to perform GradCAM on | |
grad_cam_type : str | |
GradCAM or GradCAM++ (for multiple instances of the same object, GradCAM++ can be favorable) | |
Returns | |
------- | |
image_dict : dict | |
{"image" : <image>, "cam" : <cam>, "output" : <output>, "label" : <label>} | |
<image> original input image | |
<cam> class activation map resized to original image shape | |
<output> instances object generated by the model | |
<label> label of the | |
cam_orig : numpy.ndarray | |
unprocessed raw cam | |
""" | |
model = build_model(self.cfg) | |
checkpointer = DetectionCheckpointer(model) | |
checkpointer.load(self.cfg.MODEL.WEIGHTS) | |
image = img | |
input_image_dict = self._get_input_dict(image) | |
if grad_cam_type == "GradCAM": | |
grad_cam = GradCAM(model, layer_name) | |
elif grad_cam_type == "GradCAM++": | |
grad_cam = GradCamPlusPlus(model, layer_name) | |
else: | |
raise ValueError('Grad CAM type not specified') | |
with grad_cam as cam: | |
cam, cam_orig, output = cam(input_image_dict, target_category=target_instance) | |
image_dict = {} | |
image_dict["image"] = image | |
image_dict["cam"] = cam | |
image_dict["output"] = output[0] | |
image_dict["label"] = MetadataCatalog.get(self.cfg.DATASETS.TRAIN[0]).thing_classes[output[0]["instances"].pred_classes[target_instance]] | |
return image_dict, cam_orig |