oral-lesions-detection / plots /plot_gradcam.py
Federico Galatolo
specify cpu in gradcam
0a91a75
import argparse
import torch
import matplotlib
import matplotlib.pyplot as plt
from types import SimpleNamespace
from detectron2.utils.visualizer import Visualizer
from detectron2.data import Metadata
from detectron2 import model_zoo
from plots.gradcam.detectron2_gradcam import Detectron2GradCAM
def plot_gradcam(**kwargs):
kwargs = SimpleNamespace(**kwargs)
config_file = model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg_list = [
"MODEL.ROI_HEADS.SCORE_THRESH_TEST", str(kwargs.th),
"MODEL.ROI_HEADS.NUM_CLASSES", "3",
"MODEL.WEIGHTS", kwargs.model,
"MODEL.DEVICE", "cpu"
]
metadata = Metadata()
metadata.set(
evaluator_type="coco",
thing_classes=["neoplastic", "aphthous", "traumatic"],
thing_dataset_id_to_contiguous_id={"1": 0, "2": 1, "3": 2}
)
cam_extractor = Detectron2GradCAM(config_file, cfg_list)
image_dict, cam_orig = cam_extractor.get_cam(img=kwargs.img, target_instance=kwargs.instance, layer_name=kwargs.layer, grad_cam_type="GradCAM++")
with torch.no_grad():
fig = plt.figure(figsize=(kwargs.fig_h/kwargs.fig_dpi, kwargs.fig_w/kwargs.fig_dpi), dpi=kwargs.fig_dpi)
v = Visualizer(image_dict["image"], metadata, scale=1.0)
img = image_dict["output"]["instances"][kwargs.instance]
img.remove("pred_masks")
out = v.draw_instance_predictions(img.to("cpu"))
plt.gca().set_axis_off()
plt.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0,
hspace = 0, wspace = 0)
plt.margins(0,0)
plt.imshow(out.get_image(), interpolation='none')
plt.imshow(image_dict["cam"], cmap='jet', alpha=0.5)
return fig
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True)
parser.add_argument("--layer", type=str, default="backbone.bottom_up.res5.2.conv3")
parser.add_argument("--th", type=float, default=0.5)
parser.add_argument("--file", type=str, required=True)
parser.add_argument("--instance", type=int, required=True)
parser.add_argument("--output", type=str, default="")
parser.add_argument("--fig-h", type=int, default=1080)
parser.add_argument("--fig-w", type=int, default=720)
parser.add_argument("--fig-dpi", type=int, default=100)
args = parser.parse_args()
plot_gradcam(**vars(args))