File size: 9,641 Bytes
dbd33b2
 
25b2b2b
 
 
66a5452
 
 
 
dbd33b2
 
 
 
 
 
 
25b2b2b
 
dbd33b2
 
 
 
 
25b2b2b
 
dbd33b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b2b2b
 
dbd33b2
 
 
66a5452
dbd33b2
 
 
 
 
25b2b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a5452
25b2b2b
 
 
 
 
 
 
 
66a5452
25b2b2b
 
 
a61b32e
25b2b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
66a5452
 
 
 
 
 
 
25b2b2b
 
66a5452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
import json
import ollama
import requests
import sqlite3
from tqdm import tqdm
import csv

class EvaluationSystem:
    def __init__(self, data_processor, database_handler):
        self.data_processor = data_processor
        self.db_handler = database_handler

    def relevance_scoring(self, query, retrieved_docs, top_k=5):
        query_embedding = self.data_processor.embedding_model.encode(query)
        doc_embeddings = [self.data_processor.embedding_model.encode(doc['content']) for doc in retrieved_docs]
        
        similarities = cosine_similarity([query_embedding], doc_embeddings)[0]
        return np.mean(sorted(similarities, reverse=True)[:top_k])

    def answer_similarity(self, generated_answer, reference_answer):
        gen_embedding = self.data_processor.embedding_model.encode(generated_answer)
        ref_embedding = self.data_processor.embedding_model.encode(reference_answer)
        return cosine_similarity([gen_embedding], [ref_embedding])[0][0]

    def human_evaluation(self, video_id, query):
        with self.db_handler.conn:
            cursor = self.db_handler.conn.cursor()
            cursor.execute('''
                SELECT AVG(feedback) FROM user_feedback
                WHERE video_id = ? AND query = ?
            ''', (video_id, query))
            result = cursor.fetchone()
            return result[0] if result[0] is not None else 0

    def evaluate_rag_performance(self, rag_system, test_queries, reference_answers, index_name):
        relevance_scores = []
        similarity_scores = []
        human_scores = []

        for query, reference in zip(test_queries, reference_answers):
            retrieved_docs = rag_system.data_processor.search(query, num_results=5, method='hybrid', index_name=index_name)
            generated_answer, _ = rag_system.query(query, search_method='hybrid', index_name=index_name)

            relevance_scores.append(self.relevance_scoring(query, retrieved_docs))
            similarity_scores.append(self.answer_similarity(generated_answer, reference))
            human_scores.append(self.human_evaluation(index_name, query))

        return {
            "avg_relevance_score": np.mean(relevance_scores),
            "avg_similarity_score": np.mean(similarity_scores),
            "avg_human_score": np.mean(human_scores)
        }

    def llm_as_judge(self, question, generated_answer, prompt_template):
        prompt = prompt_template.format(question=question, answer_llm=generated_answer)
        
        try:
            response = ollama.chat(
                model='phi3.5',
                messages=[{"role": "user", "content": prompt}]
            )
            evaluation = json.loads(response['message']['content'])
            return evaluation
        except Exception as e:
            print(f"Error in LLM evaluation: {str(e)}")
            return None

    def evaluate_rag(self, rag_system, ground_truth_file, prompt_template=None):
        try:
            ground_truth = pd.read_csv(ground_truth_file)
        except FileNotFoundError:
            print("Ground truth file not found. Please generate ground truth data first.")
            return None

        evaluations = []

        for _, row in tqdm(ground_truth.iterrows(), total=len(ground_truth)):
            question = row['question']
            video_id = row['video_id']
            
            index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
            
            if not index_name:
                print(f"No index found for video {video_id}. Skipping this question.")
                continue

            try:
                answer_llm, _ = rag_system.query(question, search_method='hybrid', index_name=index_name)
            except ValueError as e:
                print(f"Error querying RAG system: {str(e)}")
                continue

            if prompt_template:
                evaluation = self.llm_as_judge(question, answer_llm, prompt_template)
                if evaluation:
                    evaluations.append({
                        'video_id': str(video_id),
                        'question': str(question),
                        'answer': str(answer_llm),
                        'relevance': str(evaluation.get('Relevance', 'UNKNOWN')),
                        'explanation': str(evaluation.get('Explanation', 'No explanation provided'))
                    })
            else:
                similarity = self.answer_similarity(answer_llm, row.get('reference_answer', ''))
                evaluations.append({
                    'video_id': str(video_id),
                    'question': str(question),
                    'answer': str(answer_llm),
                    'relevance': f"Similarity: {similarity}",
                    'explanation': "Cosine similarity used for evaluation"
                })

        # Save evaluations to CSV
        csv_path = 'data/evaluation_results.csv'
        with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile:
            fieldnames = ['video_id', 'question', 'answer', 'relevance', 'explanation']
            writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
            writer.writeheader()
            for eval_data in evaluations:
                writer.writerow(eval_data)

        print(f"Evaluation results saved to {csv_path}")

        # Save evaluations to database
        self.save_evaluations_to_db(evaluations)

        return evaluations

    def save_evaluations_to_db(self, evaluations):
        with sqlite3.connect(self.db_handler.db_path) as conn:
            cursor = conn.cursor()
            cursor.execute('''
            CREATE TABLE IF NOT EXISTS rag_evaluations (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                video_id TEXT,
                question TEXT,
                answer TEXT,
                relevance TEXT,
                explanation TEXT
            )
            ''')
            for eval_data in evaluations:
                cursor.execute('''
                INSERT INTO rag_evaluations (video_id, question, answer, relevance, explanation)
                VALUES (?, ?, ?, ?, ?)
                ''', (eval_data['video_id'], eval_data['question'], eval_data['answer'], 
                      eval_data['relevance'], eval_data['explanation']))
            conn.commit()
        print("Evaluation results saved to database")

    def run_full_evaluation(self, rag_system, ground_truth_file, prompt_template=None):
        # Load ground truth
        ground_truth = pd.read_csv(ground_truth_file)

        # Evaluate RAG
        rag_evaluations = self.evaluate_rag(rag_system, ground_truth_file, prompt_template)

        # Evaluate search performance
        def search_function(query, video_id):
            index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
            if index_name:
                return rag_system.data_processor.search(query, num_results=10, method='hybrid', index_name=index_name)
            return []

        search_performance = self.evaluate_search(ground_truth, search_function)

        # Optimize search parameters
        param_ranges = {'content': (0.0, 3.0)}  # Example parameter range

        def objective_function(params):
            def parameterized_search(query, video_id):
                index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
                if index_name:
                    return rag_system.data_processor.search(query, num_results=10, method='hybrid', index_name=index_name, boost_dict=params)
                return []
            return self.evaluate_search(ground_truth, parameterized_search)['mrr']

        best_params, best_score = self.simple_optimize(param_ranges, objective_function)

        return {
            "rag_evaluations": rag_evaluations,
            "search_performance": search_performance,
            "best_params": best_params,
            "best_score": best_score
        }


    def hit_rate(self, relevance_total):
        return sum(any(line) for line in relevance_total) / len(relevance_total)

    def mrr(self, relevance_total):
        scores = []
        for line in relevance_total:
            for rank, relevant in enumerate(line, 1):
                if relevant:
                    scores.append(1 / rank)
                    break
            else:
                scores.append(0)
        return sum(scores) / len(scores)

    def simple_optimize(self, param_ranges, objective_function, n_iterations=10):
        best_params = None
        best_score = float('-inf')
        for _ in range(n_iterations):
            current_params = {param: np.random.uniform(min_val, max_val) 
                              for param, (min_val, max_val) in param_ranges.items()}
            current_score = objective_function(current_params)
            if current_score > best_score:
                best_score = current_score
                best_params = current_params
        return best_params, best_score

    def evaluate_search(self, ground_truth, search_function):
        relevance_total = []
        for _, row in tqdm(ground_truth.iterrows(), total=len(ground_truth)):
            video_id = row['video_id']
            results = search_function(row['question'], video_id)
            relevance = [d['video_id'] == video_id for d in results]
            relevance_total.append(relevance)
        return {
            'hit_rate': self.hit_rate(relevance_total),
            'mrr': self.mrr(relevance_total),
        }