Spaces:
Running
Running
File size: 18,475 Bytes
dbd33b2 25b2b2b dbd33b2 25b2b2b dbd33b2 25b2b2b 507c938 25b2b2b 507c938 dbd33b2 a61b32e dbd33b2 507c938 a61b32e 25b2b2b dbd33b2 25b2b2b dbd33b2 25b2b2b dbd33b2 25b2b2b dbd33b2 25b2b2b dbd33b2 25b2b2b dbd33b2 25b2b2b 507c938 25b2b2b dbd33b2 25b2b2b dbd33b2 25b2b2b 507c938 25b2b2b 507c938 25b2b2b a61b32e 507c938 25b2b2b 507c938 a61b32e 507c938 a61b32e 507c938 a61b32e 507c938 25b2b2b 507c938 25b2b2b 507c938 25b2b2b 507c938 25b2b2b 507c938 25b2b2b 507c938 25b2b2b 507c938 25b2b2b 507c938 25b2b2b a61b32e 25b2b2b dbd33b2 25b2b2b 507c938 25b2b2b dbd33b2 507c938 25b2b2b 507c938 a61b32e 507c938 dbd33b2 507c938 dbd33b2 25b2b2b dbd33b2 25b2b2b 507c938 dbd33b2 25b2b2b 507c938 dbd33b2 25b2b2b 507c938 dbd33b2 507c938 25b2b2b 507c938 dbd33b2 507c938 25b2b2b 507c938 25b2b2b 507c938 25b2b2b 507c938 25b2b2b 507c938 dbd33b2 507c938 dbd33b2 507c938 dbd33b2 507c938 25b2b2b 507c938 dbd33b2 25b2b2b dbd33b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import streamlit as st
import pandas as pd
from transcript_extractor import get_transcript, get_youtube_client, extract_video_id, get_channel_videos, test_api_key, initialize_youtube_api
from data_processor import DataProcessor
from database import DatabaseHandler
from rag import RAGSystem
from query_rewriter import QueryRewriter
from evaluation import EvaluationSystem
from generate_ground_truth import generate_ground_truth, generate_ground_truth_for_all_videos
from sentence_transformers import SentenceTransformer
import os
import sys
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@st.cache_resource
def init_components():
try:
db_handler = DatabaseHandler()
data_processor = DataProcessor()
rag_system = RAGSystem(data_processor)
query_rewriter = QueryRewriter()
evaluation_system = EvaluationSystem(data_processor, db_handler)
logger.info("Components initialized successfully")
return db_handler, data_processor, rag_system, query_rewriter, evaluation_system
except Exception as e:
logger.error(f"Error initializing components: {str(e)}")
st.error(f"Error initializing components: {str(e)}")
st.error("Please check your configuration and ensure all services are running.")
return None, None, None, None, None
def check_api_key():
if test_api_key():
st.success("YouTube API key is valid and working.")
else:
st.error("YouTube API key is invalid or not set. Please check your .env file.")
new_api_key = st.text_input("Enter your YouTube API key:")
if new_api_key:
os.environ['YOUTUBE_API_KEY'] = new_api_key
with open('.env', 'a') as f:
f.write(f"\nYOUTUBE_API_KEY={new_api_key}")
st.success("API key saved. Reinitializing YouTube client...")
get_youtube_client.cache_clear() # Clear the cache to force reinitialization
if test_api_key():
st.success("YouTube client reinitialized successfully.")
else:
st.error("Failed to reinitialize YouTube client. Please check your API key.")
st.experimental_rerun()
# LLM-as-a-judge prompt template
prompt_template = """
You are an expert evaluator for a Youtube transcript assistant.
Your task is to analyze the relevance of the generated answer to the given question.
Based on the relevance of the generated answer, you will classify it
as "NON_RELEVANT", "PARTLY_RELEVANT", or "RELEVANT".
Here is the data for evaluation:
Question: {question}
Generated Answer: {answer_llm}
Please analyze the content and context of the generated answer in relation to the question
and provide your evaluation in the following JSON format:
{{
"Relevance": "NON_RELEVANT",
"Explanation": "Your explanation here"
}}
OR
{{
"Relevance": "PARTLY_RELEVANT",
"Explanation": "Your explanation here"
}}
OR
{{
"Relevance": "RELEVANT",
"Explanation": "Your explanation here"
}}
Ensure your response is a valid JSON object with these exact keys and one of the three exact values for "Relevance".
Do not include any text outside of this JSON object.
"""
def process_single_video(db_handler, data_processor, video_id, embedding_model):
existing_index = db_handler.get_elasticsearch_index_by_youtube_id(video_id)
if existing_index:
logger.info(f"Video {video_id} has already been processed with {embedding_model}. Using existing index: {existing_index}")
return existing_index
transcript_data = get_transcript(video_id)
if transcript_data is None:
logger.error(f"Failed to retrieve transcript for video {video_id}")
st.error(f"Failed to retrieve transcript for video {video_id}. Please check if the video ID is correct and the video has captions available.")
return None
# Process the transcript
processed_data = data_processor.process_transcript(video_id, transcript_data)
if processed_data is None:
logger.error(f"Failed to process transcript for video {video_id}")
return None
# Prepare video data for database insertion
video_data = {
'video_id': video_id,
'title': transcript_data['metadata'].get('title', 'Unknown Title'),
'author': transcript_data['metadata'].get('author', 'Unknown Author'),
'upload_date': transcript_data['metadata'].get('upload_date', 'Unknown Date'),
'view_count': int(transcript_data['metadata'].get('view_count', 0)),
'like_count': int(transcript_data['metadata'].get('like_count', 0)),
'comment_count': int(transcript_data['metadata'].get('comment_count', 0)),
'video_duration': transcript_data['metadata'].get('duration', 'Unknown Duration'),
'transcript_content': processed_data['content'] # Add this line to include the transcript content
}
try:
db_handler.add_video(video_data)
except Exception as e:
logger.error(f"Error adding video to database: {str(e)}")
st.error(f"Error adding video {video_id} to database: {str(e)}")
return None
index_name = f"video_{video_id}_{embedding_model}".lower()
try:
index_name = data_processor.build_index(index_name)
logger.info(f"Successfully built index: {index_name}")
except Exception as e:
logger.error(f"Error building index: {str(e)}")
st.error(f"Error building index for video {video_id}: {str(e)}")
return None
embedding_model_id = db_handler.add_embedding_model(embedding_model, "Description of the model")
video_db_record = db_handler.get_video_by_youtube_id(video_id)
if video_db_record is None:
logger.error(f"Failed to retrieve video record from database for video {video_id}")
st.error(f"Failed to retrieve video record from database for video {video_id}")
return None
video_db_id = video_db_record[0]
db_handler.add_elasticsearch_index(video_db_id, index_name, embedding_model_id)
logger.info(f"Processed and indexed transcript for video {video_id}")
st.success(f"Successfully processed and indexed transcript for video {video_id}")
return index_name
def process_multiple_videos(db_handler, data_processor, video_ids, embedding_model):
indices = []
for video_id in video_ids:
index = process_single_video(db_handler, data_processor, video_id, embedding_model)
if index:
indices.append(index)
logger.info(f"Processed and indexed transcripts for {len(indices)} videos")
st.success(f"Processed and indexed transcripts for {len(indices)} videos")
return indices
def ensure_video_processed(db_handler, data_processor, video_id, embedding_model):
index_name = db_handler.get_elasticsearch_index_by_youtube_id(video_id)
if not index_name:
st.warning(f"Video {video_id} has not been processed yet. Processing now...")
index_name = process_single_video(db_handler, data_processor, video_id, embedding_model)
if not index_name:
st.error(f"Failed to process video {video_id}. Please check the logs for more information.")
return False
return True
def main():
st.title("YouTube Transcript RAG System")
check_api_key()
components = init_components()
if components:
db_handler, data_processor, rag_system, query_rewriter, evaluation_system = components
else:
st.stop()
tab1, tab2, tab3 = st.tabs(["RAG System", "Ground Truth Generation", "Evaluation"])
with tab1:
st.header("RAG System")
embedding_model = st.selectbox("Select embedding model:", ["multi-qa-MiniLM-L6-cos-v1", "all-mpnet-base-v2"])
st.subheader("Select a Video")
videos = db_handler.get_all_videos()
if not videos:
st.warning("No videos available. Please process some videos first.")
else:
video_df = pd.DataFrame(videos, columns=['youtube_id', 'title', 'channel_name', 'upload_date'])
channels = sorted(video_df['channel_name'].unique())
selected_channel = st.selectbox("Filter by Channel", ["All"] + channels)
if selected_channel != "All":
video_df = video_df[video_df['channel_name'] == selected_channel]
st.dataframe(video_df)
selected_video_id = st.selectbox("Select a Video", video_df['youtube_id'].tolist(), format_func=lambda x: video_df[video_df['youtube_id'] == x]['title'].iloc[0])
index_name = db_handler.get_elasticsearch_index_by_youtube_id(selected_video_id)
if index_name:
st.success(f"Using index: {index_name}")
else:
st.warning("No index found for the selected video and embedding model. The index will be built when you search.")
st.subheader("Process New Video")
input_type = st.radio("Select input type:", ["Video URL", "Channel URL", "YouTube ID"])
input_value = st.text_input("Enter the URL or ID:")
if st.button("Process"):
with st.spinner("Processing..."):
data_processor.set_embedding_model(embedding_model)
if input_type == "Video URL":
video_id = extract_video_id(input_value)
if video_id:
index_name = process_single_video(db_handler, data_processor, video_id, embedding_model)
if index_name is None:
st.error(f"Failed to process video {video_id}")
else:
st.success(f"Successfully processed video {video_id}")
else:
st.error("Failed to extract video ID from the URL")
elif input_type == "Channel URL":
channel_videos = get_channel_videos(input_value)
if channel_videos:
index_names = process_multiple_videos(db_handler, data_processor, [video['video_id'] for video in channel_videos], embedding_model)
if not index_names:
st.error("Failed to process any videos from the channel")
else:
st.success(f"Successfully processed {len(index_names)} videos from the channel")
else:
st.error("Failed to retrieve videos from the channel")
else:
index_name = process_single_video(db_handler, data_processor, input_value, embedding_model)
if index_name is None:
st.error(f"Failed to process video {input_value}")
else:
st.success(f"Successfully processed video {input_value}")
st.subheader("Query the RAG System")
query = st.text_input("Enter your query:")
rewrite_method = st.radio("Query rewriting method:", ["None", "Chain of Thought", "ReAct"])
search_method = st.radio("Search method:", ["Hybrid", "Text-only", "Embedding-only"])
if st.button("Search"):
if not selected_video_id:
st.error("Please select a video before searching.")
else:
with st.spinner("Searching..."):
rewritten_query = query
rewrite_prompt = ""
if rewrite_method == "Chain of Thought":
rewritten_query, rewrite_prompt = query_rewriter.rewrite_cot(query)
elif rewrite_method == "ReAct":
rewritten_query, rewrite_prompt = query_rewriter.rewrite_react(query)
st.subheader("Query Processing")
st.write("Original query:", query)
if rewrite_method != "None":
st.write("Rewritten query:", rewritten_query)
st.text_area("Query rewriting prompt:", rewrite_prompt, height=100)
if rewritten_query == query:
st.warning("Query rewriting failed. Using original query.")
search_method_map = {"Hybrid": "hybrid", "Text-only": "text", "Embedding-only": "embedding"}
try:
if not index_name:
st.info("Building index for the selected video...")
index_name = process_single_video(db_handler, data_processor, selected_video_id, embedding_model)
if not index_name:
st.error("Failed to build index for the selected video.")
return
response, final_prompt = rag_system.query(rewritten_query, search_method=search_method_map[search_method], index_name=index_name)
st.subheader("RAG System Prompt")
if final_prompt:
st.text_area("Prompt sent to LLM:", final_prompt, height=300)
else:
st.warning("No prompt was generated. This might indicate an issue with the RAG system.")
st.subheader("Response")
if response:
st.write(response)
else:
st.error("No response generated. Please try again or check the system logs for errors.")
except ValueError as e:
logger.error(f"Error during search: {str(e)}")
st.error(f"Error during search: {str(e)}")
except Exception as e:
logger.error(f"An unexpected error occurred: {str(e)}")
st.error(f"An unexpected error occurred: {str(e)}")
with tab2:
st.header("Ground Truth Generation")
videos = db_handler.get_all_videos()
if not videos:
st.warning("No videos available. Please process some videos first.")
else:
video_df = pd.DataFrame(videos, columns=['youtube_id', 'title', 'channel_name', 'upload_date'])
st.dataframe(video_df)
selected_video_id = st.selectbox("Select a Video", video_df['youtube_id'].tolist(),
format_func=lambda x: video_df[video_df['youtube_id'] == x]['title'].iloc[0],
key="gt_video_select")
if st.button("Generate Ground Truth for Selected Video"):
if ensure_video_processed(db_handler, data_processor, selected_video_id, embedding_model):
with st.spinner("Generating ground truth..."):
ground_truth_df = generate_ground_truth(db_handler, data_processor, selected_video_id)
if ground_truth_df is not None:
st.dataframe(ground_truth_df)
csv = ground_truth_df.to_csv(index=False)
st.download_button(
label="Download Ground Truth CSV",
data=csv,
file_name=f"ground_truth_{selected_video_id}.csv",
mime="text/csv",
)
if st.button("Generate Ground Truth for All Videos"):
with st.spinner("Processing videos and generating ground truth..."):
for video_id in video_df['youtube_id']:
ensure_video_processed(db_handler, data_processor, video_id, embedding_model)
ground_truth_df = generate_ground_truth_for_all_videos(db_handler, data_processor)
if ground_truth_df is not None:
st.dataframe(ground_truth_df)
csv = ground_truth_df.to_csv(index=False)
st.download_button(
label="Download Ground Truth CSV (All Videos)",
data=csv,
file_name="ground_truth_all_videos.csv",
mime="text/csv",
)
with tab3:
st.header("RAG Evaluation")
try:
ground_truth_df = pd.read_csv('data/ground-truth-retrieval.csv')
ground_truth_available = True
except FileNotFoundError:
ground_truth_available = False
if ground_truth_available:
st.write("Evaluation will be run on the following ground truth data:")
st.dataframe(ground_truth_df)
st.info("The evaluation will use this ground truth data to assess the performance of the RAG system.")
sample_size = st.number_input("Enter sample size for evaluation:", min_value=1, max_value=len(ground_truth_df), value=min(200, len(ground_truth_df)))
if st.button("Run Evaluation"):
with st.spinner("Running evaluation..."):
evaluation_results = evaluation_system.evaluate_rag(rag_system, 'data/ground-truth-retrieval.csv', sample_size, prompt_template)
if evaluation_results:
st.write("Evaluation Results:")
st.dataframe(pd.DataFrame(evaluation_results, columns=['Video ID', 'Question', 'Answer', 'Relevance', 'Explanation']))
else:
st.warning("No ground truth data available. Please generate ground truth data first.")
st.button("Run Evaluation", disabled=True)
if not ground_truth_available:
st.subheader("Generate Ground Truth")
st.write("You need to generate ground truth data before running the evaluation.")
if st.button("Go to Ground Truth Generation"):
st.session_state.active_tab = "Ground Truth Generation"
st.experimental_rerun()
if __name__ == "__main__":
if not initialize_youtube_api():
logger.error("Failed to initialize YouTube API. Exiting.")
sys.exit(1)
main() |