Spaces:
Running
Running
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
class EvaluationSystem: | |
def __init__(self, data_processor, database_handler): | |
self.data_processor = data_processor | |
self.db_handler = database_handler | |
def relevance_scoring(self, query, retrieved_docs, top_k=5): | |
query_embedding = self.data_processor.process_query(query) | |
doc_embeddings = [self.data_processor.process_query(doc) for doc in retrieved_docs] | |
similarities = cosine_similarity([query_embedding], doc_embeddings)[0] | |
return np.mean(sorted(similarities, reverse=True)[:top_k]) | |
def answer_similarity(self, generated_answer, reference_answer): | |
gen_embedding = self.data_processor.process_query(generated_answer) | |
ref_embedding = self.data_processor.process_query(reference_answer) | |
return cosine_similarity([gen_embedding], [ref_embedding])[0][0] | |
def human_evaluation(self, video_id, query): | |
with self.db_handler.conn: | |
cursor = self.db_handler.conn.cursor() | |
cursor.execute(''' | |
SELECT AVG(feedback) FROM user_feedback | |
WHERE video_id = ? AND query = ? | |
''', (video_id, query)) | |
result = cursor.fetchone() | |
return result[0] if result[0] is not None else 0 | |
def evaluate_rag_performance(self, rag_system, test_queries, reference_answers, index_name): | |
relevance_scores = [] | |
similarity_scores = [] | |
human_scores = [] | |
for query, reference in zip(test_queries, reference_answers): | |
retrieved_docs = rag_system.es_handler.search(index_name, rag_system.data_processor.process_query(query)) | |
generated_answer = rag_system.query(index_name, query) | |
relevance_scores.append(self.relevance_scoring(query, retrieved_docs)) | |
similarity_scores.append(self.answer_similarity(generated_answer, reference)) | |
human_scores.append(self.human_evaluation(index_name, query)) # Assuming index_name can be used as video_id | |
return { | |
"avg_relevance_score": np.mean(relevance_scores), | |
"avg_similarity_score": np.mean(similarity_scores), | |
"avg_human_score": np.mean(human_scores) | |
} |