rag-youtube-assistant / app /evaluation.py
ganesh3's picture
fifth commit
66a5452
raw
history blame
9.64 kB
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
import json
import ollama
import requests
import sqlite3
from tqdm import tqdm
import csv
class EvaluationSystem:
def __init__(self, data_processor, database_handler):
self.data_processor = data_processor
self.db_handler = database_handler
def relevance_scoring(self, query, retrieved_docs, top_k=5):
query_embedding = self.data_processor.embedding_model.encode(query)
doc_embeddings = [self.data_processor.embedding_model.encode(doc['content']) for doc in retrieved_docs]
similarities = cosine_similarity([query_embedding], doc_embeddings)[0]
return np.mean(sorted(similarities, reverse=True)[:top_k])
def answer_similarity(self, generated_answer, reference_answer):
gen_embedding = self.data_processor.embedding_model.encode(generated_answer)
ref_embedding = self.data_processor.embedding_model.encode(reference_answer)
return cosine_similarity([gen_embedding], [ref_embedding])[0][0]
def human_evaluation(self, video_id, query):
with self.db_handler.conn:
cursor = self.db_handler.conn.cursor()
cursor.execute('''
SELECT AVG(feedback) FROM user_feedback
WHERE video_id = ? AND query = ?
''', (video_id, query))
result = cursor.fetchone()
return result[0] if result[0] is not None else 0
def evaluate_rag_performance(self, rag_system, test_queries, reference_answers, index_name):
relevance_scores = []
similarity_scores = []
human_scores = []
for query, reference in zip(test_queries, reference_answers):
retrieved_docs = rag_system.data_processor.search(query, num_results=5, method='hybrid', index_name=index_name)
generated_answer, _ = rag_system.query(query, search_method='hybrid', index_name=index_name)
relevance_scores.append(self.relevance_scoring(query, retrieved_docs))
similarity_scores.append(self.answer_similarity(generated_answer, reference))
human_scores.append(self.human_evaluation(index_name, query))
return {
"avg_relevance_score": np.mean(relevance_scores),
"avg_similarity_score": np.mean(similarity_scores),
"avg_human_score": np.mean(human_scores)
}
def llm_as_judge(self, question, generated_answer, prompt_template):
prompt = prompt_template.format(question=question, answer_llm=generated_answer)
try:
response = ollama.chat(
model='phi3.5',
messages=[{"role": "user", "content": prompt}]
)
evaluation = json.loads(response['message']['content'])
return evaluation
except Exception as e:
print(f"Error in LLM evaluation: {str(e)}")
return None
def evaluate_rag(self, rag_system, ground_truth_file, prompt_template=None):
try:
ground_truth = pd.read_csv(ground_truth_file)
except FileNotFoundError:
print("Ground truth file not found. Please generate ground truth data first.")
return None
evaluations = []
for _, row in tqdm(ground_truth.iterrows(), total=len(ground_truth)):
question = row['question']
video_id = row['video_id']
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
if not index_name:
print(f"No index found for video {video_id}. Skipping this question.")
continue
try:
answer_llm, _ = rag_system.query(question, search_method='hybrid', index_name=index_name)
except ValueError as e:
print(f"Error querying RAG system: {str(e)}")
continue
if prompt_template:
evaluation = self.llm_as_judge(question, answer_llm, prompt_template)
if evaluation:
evaluations.append({
'video_id': str(video_id),
'question': str(question),
'answer': str(answer_llm),
'relevance': str(evaluation.get('Relevance', 'UNKNOWN')),
'explanation': str(evaluation.get('Explanation', 'No explanation provided'))
})
else:
similarity = self.answer_similarity(answer_llm, row.get('reference_answer', ''))
evaluations.append({
'video_id': str(video_id),
'question': str(question),
'answer': str(answer_llm),
'relevance': f"Similarity: {similarity}",
'explanation': "Cosine similarity used for evaluation"
})
# Save evaluations to CSV
csv_path = 'data/evaluation_results.csv'
with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile:
fieldnames = ['video_id', 'question', 'answer', 'relevance', 'explanation']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for eval_data in evaluations:
writer.writerow(eval_data)
print(f"Evaluation results saved to {csv_path}")
# Save evaluations to database
self.save_evaluations_to_db(evaluations)
return evaluations
def save_evaluations_to_db(self, evaluations):
with sqlite3.connect(self.db_handler.db_path) as conn:
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS rag_evaluations (
id INTEGER PRIMARY KEY AUTOINCREMENT,
video_id TEXT,
question TEXT,
answer TEXT,
relevance TEXT,
explanation TEXT
)
''')
for eval_data in evaluations:
cursor.execute('''
INSERT INTO rag_evaluations (video_id, question, answer, relevance, explanation)
VALUES (?, ?, ?, ?, ?)
''', (eval_data['video_id'], eval_data['question'], eval_data['answer'],
eval_data['relevance'], eval_data['explanation']))
conn.commit()
print("Evaluation results saved to database")
def run_full_evaluation(self, rag_system, ground_truth_file, prompt_template=None):
# Load ground truth
ground_truth = pd.read_csv(ground_truth_file)
# Evaluate RAG
rag_evaluations = self.evaluate_rag(rag_system, ground_truth_file, prompt_template)
# Evaluate search performance
def search_function(query, video_id):
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
if index_name:
return rag_system.data_processor.search(query, num_results=10, method='hybrid', index_name=index_name)
return []
search_performance = self.evaluate_search(ground_truth, search_function)
# Optimize search parameters
param_ranges = {'content': (0.0, 3.0)} # Example parameter range
def objective_function(params):
def parameterized_search(query, video_id):
index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id)
if index_name:
return rag_system.data_processor.search(query, num_results=10, method='hybrid', index_name=index_name, boost_dict=params)
return []
return self.evaluate_search(ground_truth, parameterized_search)['mrr']
best_params, best_score = self.simple_optimize(param_ranges, objective_function)
return {
"rag_evaluations": rag_evaluations,
"search_performance": search_performance,
"best_params": best_params,
"best_score": best_score
}
def hit_rate(self, relevance_total):
return sum(any(line) for line in relevance_total) / len(relevance_total)
def mrr(self, relevance_total):
scores = []
for line in relevance_total:
for rank, relevant in enumerate(line, 1):
if relevant:
scores.append(1 / rank)
break
else:
scores.append(0)
return sum(scores) / len(scores)
def simple_optimize(self, param_ranges, objective_function, n_iterations=10):
best_params = None
best_score = float('-inf')
for _ in range(n_iterations):
current_params = {param: np.random.uniform(min_val, max_val)
for param, (min_val, max_val) in param_ranges.items()}
current_score = objective_function(current_params)
if current_score > best_score:
best_score = current_score
best_params = current_params
return best_params, best_score
def evaluate_search(self, ground_truth, search_function):
relevance_total = []
for _, row in tqdm(ground_truth.iterrows(), total=len(ground_truth)):
video_id = row['video_id']
results = search_function(row['question'], video_id)
relevance = [d['video_id'] == video_id for d in results]
relevance_total.append(relevance)
return {
'hit_rate': self.hit_rate(relevance_total),
'mrr': self.mrr(relevance_total),
}