import pandas as pd import json from tqdm import tqdm import ollama from elasticsearch import Elasticsearch import sqlite3 import logging import os import re logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def extract_model_name(index_name): # Extract the model name from the index name match = re.search(r'video_[^_]+_(.+)$', index_name) if match: return match.group(1) return None def get_transcript_from_elasticsearch(es, index_name, video_id): try: result = es.search(index=index_name, body={ "query": { "match": { "video_id": video_id } } }) if result['hits']['hits']: return result['hits']['hits'][0]['_source']['content'] except Exception as e: logger.error(f"Error retrieving transcript from Elasticsearch: {str(e)}") return None def get_transcript_from_sqlite(db_path, video_id): try: conn = sqlite3.connect(db_path) cursor = conn.cursor() cursor.execute("SELECT transcript_content FROM videos WHERE youtube_id = ?", (video_id,)) result = cursor.fetchone() conn.close() if result: return result[0] except Exception as e: logger.error(f"Error retrieving transcript from SQLite: {str(e)}") return None def generate_questions(transcript): prompt_template = """ You are an AI assistant tasked with generating questions based on a YouTube video transcript. Formulate at least 10 questions that a user might ask based on the provided transcript. Make the questions specific to the content of the transcript. The questions should be complete and not too short. Use as few words as possible from the transcript. It is important that the questions are relevant to the content of the transcript and are at least 10 in number. The transcript: {transcript} Provide the output in parsable JSON without using code blocks: {{"questions": ["question1", "question2", ..., "question10"]}} """.strip() prompt = prompt_template.format(transcript=transcript) try: response = ollama.chat( model='phi3.5', messages=[{"role": "user", "content": prompt}] ) return json.loads(response['message']['content']) except Exception as e: logger.error(f"Error generating questions: {str(e)}") return None def generate_ground_truth(db_handler, data_processor, video_id): es = Elasticsearch([f'http://{os.getenv("ELASTICSEARCH_HOST", "localhost")}:{os.getenv("ELASTICSEARCH_PORT", "9200")}']) # Get the index name for the video index_name = db_handler.get_elasticsearch_index_by_youtube_id(video_id) if not index_name: logger.error(f"No Elasticsearch index found for video {video_id}") return None # Extract the model name from the index name model_name = extract_model_name(index_name) if not model_name: logger.error(f"Could not extract model name from index name: {index_name}") return None transcript = None if index_name: transcript = get_transcript_from_elasticsearch(es, index_name, video_id) logger.info(f"Transcript to generate questions using elasticsearch is {transcript}") if not transcript: transcript = db_handler.get_transcript_content(video_id) logger.info(f"Transcript to generate questions using textual data is {transcript}") if not transcript: logger.error(f"Failed to retrieve transcript for video {video_id}") return None questions = generate_questions(transcript) if questions and 'questions' in questions: df = pd.DataFrame([(video_id, q) for q in questions['questions']], columns=['video_id', 'question']) csv_path = 'data/ground-truth-retrieval.csv' df.to_csv(csv_path, index=False) logger.info(f"Ground truth data saved to {csv_path}") return df else: logger.error("Failed to generate questions.") return None def generate_ground_truth_for_all_videos(db_handler, data_processor): videos = db_handler.get_all_videos() all_questions = [] for video in tqdm(videos, desc="Generating ground truth"): video_id = video[0] # Assuming the video ID is the first element in the tuple df = generate_ground_truth(db_handler, data_processor, video_id) if df is not None: all_questions.extend(df.values.tolist()) if all_questions: df = pd.DataFrame(all_questions, columns=['video_id', 'question']) csv_path = 'data/ground-truth-retrieval.csv' df.to_csv(csv_path, index=False) logger.info(f"Ground truth data for all videos saved to {csv_path}") return df else: logger.error("Failed to generate questions for any video.") return None