Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,19 @@ import soundfile as sf
|
|
4 |
import uuid
|
5 |
import datetime
|
6 |
import shutil
|
7 |
-
from
|
8 |
-
|
|
|
9 |
|
10 |
# Description for the Gradio interface
|
11 |
-
this_description = """Text To Speech for Tibetan - using
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
# Custom function to split Tibetan text into sentences
|
18 |
def prepare_sentences(text, lang="bod"):
|
@@ -62,9 +66,18 @@ def tts_tibetan(input_text):
|
|
62 |
user_dir = f"u_{timestamp}"
|
63 |
os.makedirs(user_dir, exist_ok=True)
|
64 |
|
65 |
-
# Generate audio for each sentence
|
66 |
for i, sentence in enumerate(sentences):
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Combine the generated audio into one file
|
70 |
combined_file_path = combine_wav(user_dir, timestamp)
|
|
|
4 |
import uuid
|
5 |
import datetime
|
6 |
import shutil
|
7 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
+
import scipy.io.wavfile
|
9 |
+
import numpy as np
|
10 |
|
11 |
# Description for the Gradio interface
|
12 |
+
this_description = """Text To Speech for Tibetan - using your fine-tuned TTS model."""
|
13 |
|
14 |
+
# Load your custom TTS model and processor for inference
|
15 |
+
model_id = "ganga4364/mms-tts-bod-female" # Replace with your fine-tuned model's ID
|
16 |
+
|
17 |
+
|
18 |
+
# Use the text-to-speech pipeline with the custom model
|
19 |
+
synthesiser = pipeline("text-to-speech", model_id) # Use GPU if available
|
20 |
|
21 |
# Custom function to split Tibetan text into sentences
|
22 |
def prepare_sentences(text, lang="bod"):
|
|
|
66 |
user_dir = f"u_{timestamp}"
|
67 |
os.makedirs(user_dir, exist_ok=True)
|
68 |
|
69 |
+
# Generate audio for each sentence using your custom TTS model
|
70 |
for i, sentence in enumerate(sentences):
|
71 |
+
# Perform TTS inference for each sentence
|
72 |
+
speech = synthesiser(sentence)
|
73 |
+
|
74 |
+
# Extract the audio data and sampling rate from the pipeline output
|
75 |
+
audio_data = np.array(speech["audio"])
|
76 |
+
sample_rate = speech["sampling_rate"]
|
77 |
+
|
78 |
+
# Save each sentence as a separate WAV file
|
79 |
+
wav_path = f"{user_dir}/s_{str(i).zfill(10)}.wav"
|
80 |
+
scipy.io.wavfile.write(wav_path, rate=sample_rate, data=audio_data.astype(np.int16)) # Ensure correct format
|
81 |
|
82 |
# Combine the generated audio into one file
|
83 |
combined_file_path = combine_wav(user_dir, timestamp)
|