Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,35 +2,89 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import scipy.io.wavfile
|
4 |
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Load the TTS pipeline with the specified
|
7 |
model_id = "ganga4364/mms-tts-multi-speakers"
|
8 |
synthesiser = pipeline("text-to-speech", model=model_id)
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
11 |
def generate_audio(input_text):
|
12 |
-
#
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
audio_data = speech["audio"][0]
|
17 |
-
sample_rate = speech["sampling_rate"]
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
#
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Create the Gradio interface
|
27 |
iface = gr.Interface(
|
28 |
fn=generate_audio,
|
29 |
inputs="text",
|
30 |
-
outputs="audio", # Output should be the audio file
|
31 |
title="Tibetan TTS Model",
|
32 |
-
description="Enter text to generate speech using a fine-tuned Tibetan voice model and
|
33 |
)
|
34 |
|
35 |
-
# Launch the Gradio
|
36 |
iface.launch()
|
|
|
2 |
from transformers import pipeline
|
3 |
import scipy.io.wavfile
|
4 |
from io import BytesIO
|
5 |
+
import os
|
6 |
+
import datetime
|
7 |
+
import uuid
|
8 |
+
import shutil
|
9 |
+
import soundfile as sf
|
10 |
+
import nltk
|
11 |
+
nltk.download('punkt') # Ensure that 'punkt' tokenizer is downloaded
|
12 |
+
from nltk import sent_tokenize
|
13 |
|
14 |
+
# Load the TTS pipeline with the specified model
|
15 |
model_id = "ganga4364/mms-tts-multi-speakers"
|
16 |
synthesiser = pipeline("text-to-speech", model=model_id)
|
17 |
|
18 |
+
# Prepare sentences using NLTK for splitting into multiple sentences
|
19 |
+
def prepare_sentences(text):
|
20 |
+
return sent_tokenize(text)
|
21 |
+
|
22 |
+
# Function to generate audio for each sentence and combine them
|
23 |
def generate_audio(input_text):
|
24 |
+
# Prepare sentences from the input text
|
25 |
+
sentences = prepare_sentences(input_text)
|
26 |
+
|
27 |
+
# Create a unique directory for storing audio chunks
|
28 |
+
current_datetime = datetime.datetime.now()
|
29 |
+
timestamp = current_datetime.strftime("%Y%m%d%H%M%S%f")
|
30 |
+
user_dir = f"u_{timestamp}"
|
31 |
+
os.makedirs(user_dir, exist_ok=True)
|
32 |
|
33 |
+
audio_files = []
|
|
|
|
|
34 |
|
35 |
+
for i, sentence in enumerate(sentences):
|
36 |
+
# Perform TTS inference for each sentence
|
37 |
+
speech = synthesiser(sentence)
|
38 |
+
|
39 |
+
# Extract the audio data and sampling rate from the pipeline output
|
40 |
+
audio_data = speech["audio"][0]
|
41 |
+
sample_rate = speech["sampling_rate"]
|
42 |
+
|
43 |
+
# Save each sentence as a separate audio file
|
44 |
+
wav_path = f"{user_dir}/s_{str(i).zfill(10)}.wav"
|
45 |
+
scipy.io.wavfile.write(wav_path, rate=sample_rate, data=audio_data)
|
46 |
+
audio_files.append(wav_path)
|
47 |
|
48 |
+
# Combine all audio files into one file
|
49 |
+
combined_file_path = combine_wav(user_dir, timestamp)
|
50 |
+
|
51 |
+
return combined_file_path
|
52 |
+
|
53 |
+
# Function to combine all WAV files into one
|
54 |
+
def combine_wav(source_dir, stamp):
|
55 |
+
# Get a list of all WAV files in the folder
|
56 |
+
wav_files = [file for file in os.listdir(source_dir) if file.endswith(".wav")]
|
57 |
+
|
58 |
+
# Sort the files alphabetically to ensure the correct order of combination
|
59 |
+
wav_files.sort()
|
60 |
+
|
61 |
+
# Combine the WAV files
|
62 |
+
combined_data = []
|
63 |
+
sr = None
|
64 |
+
for file in wav_files:
|
65 |
+
file_path = os.path.join(source_dir, file)
|
66 |
+
data, sample_rate = sf.read(file_path)
|
67 |
+
if sr is None:
|
68 |
+
sr = sample_rate # Set the sample rate based on the first file
|
69 |
+
combined_data.extend(data)
|
70 |
+
|
71 |
+
# Save the combined audio to a new WAV file
|
72 |
+
combined_file_path = f"{stamp}_combined.wav"
|
73 |
+
sf.write(combined_file_path, combined_data, sr)
|
74 |
+
|
75 |
+
# Clean up temporary files
|
76 |
+
shutil.rmtree(source_dir)
|
77 |
+
|
78 |
+
return combined_file_path
|
79 |
|
80 |
# Create the Gradio interface
|
81 |
iface = gr.Interface(
|
82 |
fn=generate_audio,
|
83 |
inputs="text",
|
84 |
+
outputs="audio", # Output should be the combined audio file
|
85 |
title="Tibetan TTS Model",
|
86 |
+
description="Enter text to generate speech using a fine-tuned Tibetan voice model. The text will be split into sentences, and the generated audio will be combined and returned."
|
87 |
)
|
88 |
|
89 |
+
# Launch the Gradio interface
|
90 |
iface.launch()
|