Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
+
import scipy.io.wavfile
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the MMS-TTS model and processor for Tibetan (bod)
|
7 |
+
model_id = "ganga4364/sherab-tts" # Replace with your fine-tuned model if necessary
|
8 |
+
|
9 |
+
|
10 |
+
# Use the text-to-speech pipeline with the model
|
11 |
+
synthesiser = pipeline("text-to-speech", model_id) # add device=0 if you want to use a GPU
|
12 |
+
|
13 |
+
|
14 |
+
# Function to perform TTS inference and save audio to a file
|
15 |
+
def generate_audio(input_text):
|
16 |
+
# Perform TTS inference
|
17 |
+
speech = synthesiser(input_text)
|
18 |
+
file_path = "finetuned_output.wav"
|
19 |
+
# Save the audio to a file (e.g., 'output.wav')
|
20 |
+
scipy.io.wavfile.write(file_path, rate=speech["sampling_rate"], data=speech["audio"][0])
|
21 |
+
|
22 |
+
# Return the path to the audio file
|
23 |
+
return file_path
|
24 |
+
|
25 |
+
# Create the Gradio interface
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=generate_audio,
|
28 |
+
inputs="text", # Text input for the TTS
|
29 |
+
outputs="audio", # Output will be an audio file
|
30 |
+
title="Tibetan Text-to-Speech (MMS-TTS)",
|
31 |
+
description="Enter Tibetan text and generate speech using MMS-TTS."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the Gradio interface
|
35 |
+
iface.launch()
|