ganteng88 commited on
Commit
97047a1
·
1 Parent(s): 03e4c7d

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +8 -8
index.html CHANGED
@@ -5,7 +5,7 @@
5
  <link rel="preconnect" href="https://fonts.googleapis.com" />
6
  <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin />
7
  <link href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap" rel="stylesheet" />
8
- <title><strong>Body Part Classification</strong></title>
9
  </head>
10
  <body>
11
  <div class="container">
@@ -15,21 +15,21 @@
15
  <div class="grid-container">
16
  <h3 class="overview-heading"><span class="vl">Overview</span></h3>
17
  <p class="overview-content">
18
- The Body Part Classification program serves the critical purpose of categorizing body parts from DICOM x-ray scans into five distinct classes: abdominal, adult chest, pediatric chest, spine, and others. This program trained using ResNet18 model.
19
  </p>
20
  </div>
21
  <div class="grid-container">
22
  <h3 class="overview-heading"><span class="vl">Dataset</span></h3>
23
  <div>
24
  <p class="overview-content">
25
- The program has been meticulously trained on a robust and diverse dataset, specifically <a href="https://vindr.ai/datasets/bodypartxr" target="_blank">VinDrBodyPartXR Dataset.</a>.
26
  <br/>
27
- This dataset is introduced by Vingroup of Big Data Institute which include 16,093 x-ray images that are collected and manually annotated. It is a highly valuable resource that has been instrumental in the training of our model.
28
  </p>
29
  <ul>
30
- <li>Objective: Body Part Identification</li>
31
  <li>Task: Classification</li>
32
- <li>Modality: Grayscale Images</li>
33
  </ul>
34
  </div>
35
  </div>
@@ -37,14 +37,14 @@
37
  <h3 class="overview-heading"><span class="vl">Model Architecture</span></h3>
38
  <div>
39
  <p class="overview-content">
40
- The model architecture of ResNet18 to train x-ray images for classifying body part.
41
  </p>
42
  <img class="content-image" src="file/figures/ResNet-18.png" alt="model-architecture" width="425" height="115" style="vertical-align:middle" />
43
  </div>
44
  </div>
45
  </section>
46
  <h3 class="overview-heading"><span class="vl">Demo</span></h3>
47
- <p class="overview-content">Please select or upload a body part x-ray scan image to see the capabilities of body part classification with this model</p>
48
  </div>
49
  </body>
50
  </html>
 
5
  <link rel="preconnect" href="https://fonts.googleapis.com" />
6
  <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin />
7
  <link href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap" rel="stylesheet" />
8
+ <title><strong>HAM 1000 Classification</strong></title>
9
  </head>
10
  <body>
11
  <div class="container">
 
15
  <div class="grid-container">
16
  <h3 class="overview-heading"><span class="vl">Overview</span></h3>
17
  <p class="overview-content">
18
+ The HAM10000 Skin Cancer Classification program serves the critical purpose of categorizing skin lesions into seven distinct classes: akk, bcc, bkl, df, mel, nv, and vasc. This program is trained using a ResNet18 model.
19
  </p>
20
  </div>
21
  <div class="grid-container">
22
  <h3 class="overview-heading"><span class="vl">Dataset</span></h3>
23
  <div>
24
  <p class="overview-content">
25
+ The program has been meticulously trained on a robust and diverse dataset, specifically <a href="https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000" target="_blank">Skin Cancer : HAM10000 Dataset.</a>.
26
  <br/>
27
+ The program has been meticulously trained on a diverse and extensive dataset, known as the HAM10000 dataset. This dataset consists of 10,015 dermatoscopic images of skin lesions, meticulously collected and manually annotated. It is a valuable resource that has played a pivotal role in training our skin cancer classification model.
28
  </p>
29
  <ul>
30
+ <li>Objective: HAM 1000 Identification</li>
31
  <li>Task: Classification</li>
32
+ <li>Modality: Colour Images</li>
33
  </ul>
34
  </div>
35
  </div>
 
37
  <h3 class="overview-heading"><span class="vl">Model Architecture</span></h3>
38
  <div>
39
  <p class="overview-content">
40
+ The model architecture of ResNet18 to train images for classifying skin cancer part.
41
  </p>
42
  <img class="content-image" src="file/figures/ResNet-18.png" alt="model-architecture" width="425" height="115" style="vertical-align:middle" />
43
  </div>
44
  </div>
45
  </section>
46
  <h3 class="overview-heading"><span class="vl">Demo</span></h3>
47
+ <p class="overview-content">Please select or upload a skin cancer scan image to see the capabilities of skin part classification with this model</p>
48
  </div>
49
  </body>
50
  </html>