ganteng88 commited on
Commit
b689dd0
·
1 Parent(s): 80ffc34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -147,7 +147,7 @@ for key in list(state_dict.keys()):
147
 
148
  model.load_state_dict(state_dict)
149
  model.eval()
150
-
151
  class_names = {
152
  'akk': 'Actinic Keratosis',
153
  'bcc': 'Basal Cell Carcinoma',
@@ -157,11 +157,14 @@ class_names = {
157
  'nv': 'Melanocytic Nevi',
158
  'vasc': 'Vascular Lesion'
159
  }
160
-
 
 
161
  examples_dir = "sample"
162
 
163
 
164
 
 
165
  transformation_pipeline = transforms.Compose([
166
  transforms.ToPILImage(),
167
  transforms.Grayscale(num_output_channels=3),
@@ -217,7 +220,7 @@ def image_classifier(inp):
217
  # postprocess
218
  result = torch.nn.functional.softmax(result, dim=1) # apply softmax
219
  result = result[0].detach().numpy().tolist() # take the first batch
220
- labeled_result = {class_names[key]: score for key, score in result.items()}
221
 
222
  return labeled_result
223
 
 
147
 
148
  model.load_state_dict(state_dict)
149
  model.eval()
150
+ """
151
  class_names = {
152
  'akk': 'Actinic Keratosis',
153
  'bcc': 'Basal Cell Carcinoma',
 
157
  'nv': 'Melanocytic Nevi',
158
  'vasc': 'Vascular Lesion'
159
  }
160
+ """
161
+ class_names = ['akk', 'bcc', 'bkl', 'df', 'mel', 'nv', 'vasc']
162
+ class_names.sort()
163
  examples_dir = "sample"
164
 
165
 
166
 
167
+
168
  transformation_pipeline = transforms.Compose([
169
  transforms.ToPILImage(),
170
  transforms.Grayscale(num_output_channels=3),
 
220
  # postprocess
221
  result = torch.nn.functional.softmax(result, dim=1) # apply softmax
222
  result = result[0].detach().numpy().tolist() # take the first batch
223
+ labeled_result = {name:score for name, score in zip(class_names, result)}
224
 
225
  return labeled_result
226