Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -147,7 +147,7 @@ for key in list(state_dict.keys()):
|
|
147 |
|
148 |
model.load_state_dict(state_dict)
|
149 |
model.eval()
|
150 |
-
|
151 |
class_names = {
|
152 |
'akk': 'Actinic Keratosis',
|
153 |
'bcc': 'Basal Cell Carcinoma',
|
@@ -157,11 +157,14 @@ class_names = {
|
|
157 |
'nv': 'Melanocytic Nevi',
|
158 |
'vasc': 'Vascular Lesion'
|
159 |
}
|
160 |
-
|
|
|
|
|
161 |
examples_dir = "sample"
|
162 |
|
163 |
|
164 |
|
|
|
165 |
transformation_pipeline = transforms.Compose([
|
166 |
transforms.ToPILImage(),
|
167 |
transforms.Grayscale(num_output_channels=3),
|
@@ -217,7 +220,7 @@ def image_classifier(inp):
|
|
217 |
# postprocess
|
218 |
result = torch.nn.functional.softmax(result, dim=1) # apply softmax
|
219 |
result = result[0].detach().numpy().tolist() # take the first batch
|
220 |
-
labeled_result = {
|
221 |
|
222 |
return labeled_result
|
223 |
|
|
|
147 |
|
148 |
model.load_state_dict(state_dict)
|
149 |
model.eval()
|
150 |
+
"""
|
151 |
class_names = {
|
152 |
'akk': 'Actinic Keratosis',
|
153 |
'bcc': 'Basal Cell Carcinoma',
|
|
|
157 |
'nv': 'Melanocytic Nevi',
|
158 |
'vasc': 'Vascular Lesion'
|
159 |
}
|
160 |
+
"""
|
161 |
+
class_names = ['akk', 'bcc', 'bkl', 'df', 'mel', 'nv', 'vasc']
|
162 |
+
class_names.sort()
|
163 |
examples_dir = "sample"
|
164 |
|
165 |
|
166 |
|
167 |
+
|
168 |
transformation_pipeline = transforms.Compose([
|
169 |
transforms.ToPILImage(),
|
170 |
transforms.Grayscale(num_output_channels=3),
|
|
|
220 |
# postprocess
|
221 |
result = torch.nn.functional.softmax(result, dim=1) # apply softmax
|
222 |
result = result[0].detach().numpy().tolist() # take the first batch
|
223 |
+
labeled_result = {name:score for name, score in zip(class_names, result)}
|
224 |
|
225 |
return labeled_result
|
226 |
|