File size: 12,064 Bytes
67dafee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import streamlit as st
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import math
from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.feature_extraction.text import TfidfVectorizer
import itertools
import plotly.figure_factory as ff
from community import community_louvain
import networkx as nx
from sklearn.metrics.pairwise import cosine_distances
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cluster import AgglomerativeClustering
from wordcloud import WordCloud
import plotly.graph_objects as go


def create_dendrogram(X, labels):
    Z = linkage(X.toarray(), "single")
    fig = ff.create_dendrogram(Z, orientation='left', labels=labels)
    return fig
    
@st.cache_data
def load_data():
    data = pd.read_csv("HuggingFaceLLMsWithParamsAndReadmeLinks.csv")
    return data

df = pd.read_csv("HuggingFaceLLMsWithParamsAndReadmeLinks.csv")
st.title("Constellation: An Atlas of 15,000 Large Language Models")
st.write("15,821 to be precise. Scraped from Hugging Face on July 18, 2023.")
st.write("Please cite: Gao, S., & Gao, A. K. (2023, July 19). On the Origin of LLMs: An Evolutionary Tree and Graph for 15,821 Large Language Models. ArXiv.org; ArXiv. https://doi.org/10.48550/arXiv.2307.09793")
threshold = st.number_input("Enter the minimum number of downloads an LLM must have to be considered.", value=10000)
numClusters = st.number_input("Number of clusters to group into.", value=20, min_value=2, max_value=50)
wordClouds = st.checkbox("Show word clouds?")

def create_downloads_vs_likes_scatter(dataframe):
    # Convert 'likes' column to numeric values
    dataframe['likes'] = pd.to_numeric(dataframe['likes'], errors='coerce')
    
    # Filter out the outlier point at 14M likes
    dataframe_filtered = dataframe[dataframe['likes'] != 14000000]
    
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=dataframe_filtered['downloads'], y=dataframe_filtered['likes'], mode='markers',
                             marker=dict(color='blue', size=7, opacity=0.7), 
                             text=dataframe_filtered['model_name'],
                             hovertemplate="Model Name: %{text}<br>Downloads: %{x}<br>Likes: %{y}<extra></extra>"))
    fig.update_layout(title='Downloads vs Likes',
                      xaxis_title='Downloads',
                      #xaxis_range=[0,300000],
                      yaxis_title='Likes')
                    #yaxis_range=[0, 800])  # Set custom y-axis range
    return fig

  
if st.button("Run Clustering"):
    df_filtered = df[df['downloads'] > threshold]
    df_extra_filtered = df_filtered.drop_duplicates(subset='model_name', keep='first')
    
    # Convert the model names into a matrix of TF-IDF features
    vectorizer = TfidfVectorizer(analyzer='char', ngram_range=(2, 8))
    X = vectorizer.fit_transform(df_extra_filtered['model_name'].tolist()).toarray()
    
    # Function to compute the pairwise cosine distances
    def distfun(X):
        return cosine_distances(X)
    
    # Function to compute the linkage matrix
    def linkagefun(dist_array):
        return linkage(dist_array, "single")
    
    # Create dendrogram
    fig = ff.create_dendrogram(X, orientation='bottom', labels=df_extra_filtered['model_name'].tolist(), distfun=distfun, linkagefun=linkagefun)
    #fig.update_layout(width=800, height=500)
    st.plotly_chart(fig, use_container_width=True)
        
    # Group by cluster
    # Convert the model names into a matrix of token counts
    vectorizer = CountVectorizer(analyzer='char', ngram_range=(3, 6))
    X = vectorizer.fit_transform(df_extra_filtered['model_name'])
    # Use clustering to group model names
    clustering = AgglomerativeClustering(n_clusters=20).fit(X.toarray())
    
    # Add cluster labels to the filtered DataFrame
    df_extra_filtered['cluster'] = clustering.labels_
    
    # Count the number of models in each cluster
    cluster_counts = df_extra_filtered['cluster'].value_counts()
    
    # Create a bar chart
    fig = go.Figure([go.Bar(x=cluster_counts.index, y=cluster_counts.values)])
    fig.update_layout(title='Number of Models per Cluster', xaxis_title='Cluster', yaxis_title='Number of Models')
    st.plotly_chart(fig)

    # graphing!
    
    # Convert the model names into a matrix of TF-IDF features
    vectorizer = TfidfVectorizer(analyzer='char', ngram_range=(2, 8))
    X = vectorizer.fit_transform(df_extra_filtered['model_name'])
    
    # Compute the pairwise cosine similarities
    sim_matrix = cosine_similarity(X)
    
    # Create a graph
    G = nx.Graph()

    # Add nodes to the graph
    for i in range(len(df_extra_filtered)):
        G.add_node(i, label=df_extra_filtered['model_name'].iloc[i])
    
    # Add edges to the graph
    for i in range(len(df_extra_filtered)):
        for j in range(i+1, len(df_extra_filtered)):
            # If the similarity is above a certain threshold
            if sim_matrix[i, j] > 0.2:
                G.add_edge(i, j, weight=sim_matrix[i, j])
    
    # Compute the layout positions
    pos = nx.spring_layout(G)

    # Detect communities
    partition = community_louvain.best_partition(G)
    # Create a figure
    # Compute the layout for each community
    layouts = {}
    for community in set(partition.values()):
        nodes_in_community = [node for node, comm in partition.items() if comm == community]
        subgraph = G.subgraph(nodes_in_community)
        layouts[community] = nx.spring_layout(subgraph)
    
    # Combine the layouts, spreading them out on a grid
    grid_size = math.ceil(math.sqrt(len(layouts)))  # Size of the grid
    grid = np.array(list(itertools.product(range(grid_size), repeat=2)))  # Coordinates for the grid
    scale = 2  # Scale factor for spreading out the communities
    offsets = dict(zip(layouts, grid*scale))  # Map communities to grid coordinates
    
    combined_layout = {}
    for community, layout in layouts.items():
        for node, position in layout.items():
            combined_layout[node] = position + offsets[community]
        
    # Prepare data for plotly
    x = [combined_layout[node][0] for node in range(len(df_extra_filtered))]
    y = [combined_layout[node][1] for node in range(len(df_extra_filtered))]
    
    # Create a figure
    fig = go.Figure()
    
    # Prepare lists for node positions, labels, ranks, downloads, likes, and params
    x, y, labels, ranks, downloads, likes, params = [], [], [], [], [], [], []
    
    # Prepare the node attributes
    for node, community in partition.items():
        # Get model info
        model_info = df_extra_filtered.iloc[node]
        
        # Node position
        x.append(pos[node][0])
        y.append(pos[node][1])
    
        # Node attributes
        labels.append(model_info['model_name'])
        ranks.append(model_info['rank'])
        downloads.append(model_info['downloads'])
        likes.append(model_info['likes'])
        params.append(model_info['params_millions'] if pd.notnull(model_info['params_millions']) else 'N/A')
    
    # Compute the centroid of each cluster for background coloring
    centroids = dict()
    community_sizes = dict()  # Create a dict to store the sizes of each community
    for community in set(partition.values()):
        nodes_in_community = [node for node, comm in partition.items() if comm == community]
        if len(nodes_in_community) > 1:  # Only consider communities with more than one node
            centroid_x = np.mean([pos[node][0] for node in nodes_in_community])
            centroid_y = np.mean([pos[node][1] for node in nodes_in_community])
            centroids[community] = (centroid_x, centroid_y)
            community_sizes[community] = len(nodes_in_community)
    
    # Add background coloring for each cluster
    for community, centroid in centroids.items():
        fig.add_trace(go.Scatter(
            x=[centroid[0]], y=[centroid[1]],
            mode='markers',
            marker=dict(
                size=community_sizes[community]*5,  # Adjust size by multiplying the community size by a factor
                color=community,
                opacity=0.1  
            ),
            hoverinfo='none',
            showlegend=False
        ))
    
    # Add nodes to the figure
    fig.add_trace(go.Scatter(
        x=x, y=y,
        mode='markers',
        marker=dict(size=3, color=community),
        text=labels,
        customdata=np.stack((ranks, downloads, likes, params), axis=-1),
        hovertemplate=(
            "Model Name: %{text}<br>"
            "Rank: %{customdata[0]}<br>"
            "Downloads: %{customdata[1]}<br>"
            "Likes: %{customdata[2]}<br>"
            "Params (millions): %{customdata[3]}"
            "<extra></extra>"
        )
    ))
    
    # Add edges to the figure
    for edge in G.edges():
        # Calculate edge weight for line width, normalize it for better visibility
        line_width = G.edges[edge]['weight'] / np.max(list(nx.get_edge_attributes(G, 'weight').values()))
    
        fig.add_trace(go.Scatter(
            x=[pos[edge[0]][0], pos[edge[1]][0]],
            y=[pos[edge[0]][1], pos[edge[1]][1]],
            mode='lines',
            line=dict(width=line_width), # Multiply by a factor for better visibility
            hoverinfo='none'
        ))
    
    # Set the figure layout
    fig.update_layout(showlegend=False, hovermode='closest')
    
    st.plotly_chart(fig)
    
    # Calculate degree of each node
    degrees = dict(G.degree())
    
    # Sort nodes by degree in descending order and get top 20
    top_20_models = sorted(degrees.items(), key=lambda x: x[1], reverse=True)[:20]
    
    # Prepare data for display
    models = [df_extra_filtered.iloc[node]['model_name'] for node, degree in top_20_models]
    connections = [degree for node, degree in top_20_models]
    
    st.subheader("Top 20 Models by Number of Connections")
    for model, connections in zip(models, connections):
        st.write(f"{model}: {connections} connections")


    # Find the representative model for each community
    representatives = dict()
    for community in set(partition.values()):
        nodes_in_community = [node for node, comm in partition.items() if comm == community]
        # Select the node with the highest degree within the community as representative
        representative = max(nodes_in_community, key=lambda node: degrees[node])
        representatives[community] = df_extra_filtered.iloc[representative]['model_name']
    
    # Prepare data for display
    communities = list(representatives.keys())
    community_sizes = [community_sizes.get(comm, 1) for comm in communities]  # Use a default size of 1 for communities not in the dictionary
    representatives = list(representatives.values())
    
    # Create a DataFrame to hold the data
    df_reps = pd.DataFrame({
        'Community ID': communities,
        'Size': community_sizes,
        'Representative Model': representatives
    })
    
    # Sort the DataFrame by community size in descending order
    df_reps.sort_values(by='Size', ascending=False, inplace=True)
    
    # Display in Streamlit
    st.subheader("Representative for each community, sorted by community size.")
    st.dataframe(df_reps)
    if wordClouds:
        groups = df_extra_filtered.groupby('cluster')
            
        for name, group in groups:
            # Join all model names in the cluster into a single string
            text = ' '.join(group['model_name'])
            
            # Generate a word cloud
            wordcloud = WordCloud().generate(text)
            
            # Convert WordCloud to Image
            image = wordcloud.to_image()
        
            # Display the word cloud
            st.image(image, use_column_width=True)
            st.write(f'Word Cloud for Cluster {name}')

    scatter_plot = create_downloads_vs_likes_scatter(df_extra_filtered)
    st.plotly_chart(scatter_plot, use_container_width=True)