Spaces:
Building
Building
File size: 20,846 Bytes
4ed1b4f c67f04e 4ed1b4f c67f04e 4ed1b4f c67f04e 4ed1b4f c67f04e 4ed1b4f c67f04e 4ed1b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import os
import time
import numpy as np
from google import genai
from openai import OpenAI
import time
import random
from openai import RateLimitError
from functools import wraps
from google.genai import types
from pydantic import BaseModel
from concurrent.futures import ThreadPoolExecutor
from html_chunking import get_html_chunks
from abc import ABC, abstractmethod
from typing import List, Any, Dict, Tuple, Optional
import re
import json
from langchain_text_splitters import HTMLHeaderTextSplitter
from sentence_transformers import SentenceTransformer
class LLMClient(ABC):
"""
Abstract base class for calling LLM APIs.
"""
def __init__(self, config: dict = None):
"""
Initializes the LLMClient with a configuration dictionary.
Args:
config (dict): Configuration settings for the LLM client.
"""
self.config = config or {}
@abstractmethod
def call_api(self, prompt: str) -> str:
"""
Call the underlying LLM API with the given prompt.
Args:
prompt (str): The prompt or input text for the LLM.
Returns:
str: The response from the LLM.
"""
pass
class GeminiLLMClient(LLMClient):
"""
Concrete implementation of LLMClient for the Gemini API.
"""
def __init__(self, config: dict):
"""
Initializes the GeminiLLMClient with an API key, model name, and optional generation settings.
Args:
config (dict): Configuration containing:
- 'api_key': (optional) API key for Gemini (falls back to GEMINI_API_KEY env var)
- 'model_name': (optional) the model to use (default 'gemini-2.0-flash')
- 'generation_config': (optional) dict of GenerateContentConfig parameters
"""
api_key = config.get("api_key") or os.environ.get("GEMINI_API_KEY")
if not api_key:
raise ValueError(
"API key for Gemini must be provided in config['api_key'] or GEMINI_API_KEY env var."
)
self.client = genai.Client(api_key=api_key)
self.model_name = config.get("model_name", "gemini-2.0-flash")
# allow custom generation settings, fallback to sensible defaults
gen_conf = config.get("generation_config", {})
self.generate_config = types.GenerateContentConfig(
response_mime_type=gen_conf.get("response_mime_type", "text/plain"),
temperature=gen_conf.get("temperature"),
max_output_tokens=gen_conf.get("max_output_tokens"),
top_p=gen_conf.get("top_p"),
top_k=gen_conf.get("top_k"),
# add any other fields you want to expose
)
def call_api(self, prompt: str) -> str:
"""
Call the Gemini API with the given prompt (non-streaming).
Args:
prompt (str): The input text for the API.
Returns:
str: The generated text from the Gemini API.
"""
contents = [
types.Content(
role="user",
parts=[types.Part.from_text(text=prompt)],
)
]
# Non-streaming call returns a full response object
response = self.client.models.generate_content(
model=self.model_name,
contents=contents,
config=self.generate_config,
)
# Combine all output parts into a single string
return response.text
def extract_markdown_json(text: str) -> Optional[Dict[str, Any]]:
"""
Find the first Markdown ```json ...``` block in `text`,
parse it as JSON, and return the resulting dict.
Returns None if no valid JSON block is found.
"""
# 1) Look specifically for a ```json code fence
fence_match = re.search(
r"```json\s*(\{.*?\})\s*```",
text,
re.DOTALL | re.IGNORECASE
)
if not fence_match:
return None
json_str = fence_match.group(1)
try:
return json.loads(json_str)
except json.JSONDecodeError:
return None
def retry_on_ratelimit(max_retries=5, base_delay=1.0, max_delay=10.0):
def deco(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
delay = base_delay
for attempt in range(max_retries):
try:
return fn(*args, **kwargs)
except RateLimitError:
if attempt == max_retries - 1:
# give up
raise
# back off + jitter
sleep = min(max_delay, delay) + random.uniform(0, delay)
time.sleep(sleep)
delay *= 2
# unreachable
return wrapped
return deco
class NvidiaLLMClient(LLMClient):
"""
Concrete implementation of LLMClient for the NVIDIA API (non-streaming).
"""
def __init__(self, config: dict):
"""
Initializes the NvidiaLLMClient with an API key, model name, and optional generation settings.
Args:
config (dict): Configuration containing:
- 'api_key': (optional) API key for NVIDIA (falls back to NVIDIA_API_KEY env var)
- 'model_name': (optional) the model to use (default 'google/gemma-3-1b-it')
- 'generation_config': (optional) dict of generation parameters like temperature, top_p, etc.
"""
api_key = config.get("api_key") or os.environ.get("NVIDIA_API_KEY")
if not api_key:
raise ValueError(
"API key for NVIDIA must be provided in config['api_key'] or NVIDIA_API_KEY env var."
)
self.client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key=api_key
)
self.model_name = config.get("model_name", "google/gemma-3-1b-it")
# Store generation settings with sensible defaults
gen_conf = config.get("generation_config", {})
self.temperature = gen_conf.get("temperature", 0.1)
self.top_p = gen_conf.get("top_p", 0.7)
self.max_tokens = gen_conf.get("max_tokens", 512)
def set_model(self, model_name: str):
"""
Set the model name for the NVIDIA API client.
Args:
model_name (str): The name of the model to use.
"""
self.model_name = model_name
@retry_on_ratelimit(max_retries=6, base_delay=0.5, max_delay=5.0)
def call_api(self, prompt: str) -> str:
"""
Call the NVIDIA API with the given prompt (non-streaming).
Args:
prompt (str): The input text for the API.
Returns:
str: The generated text from the NVIDIA API.
"""
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
temperature=self.temperature,
top_p=self.top_p,
max_tokens=self.max_tokens
# stream is omitted (defaults to False)
)
# print("DONE")
# For the standard (non-streaming) response:
# choices[0].message.content holds the generated text
return response.choices[0].message.content
def call_batch(self, prompts, max_workers=8):
"""
Parallel batch with isolated errors: each prompt that still
fails after retries will raise, but others succeed.
"""
from concurrent.futures import ThreadPoolExecutor, as_completed
results = [None] * len(prompts)
with ThreadPoolExecutor(max_workers=max_workers) as ex:
futures = {ex.submit(self.call_api, p): i for i, p in enumerate(prompts)}
for fut in as_completed(futures):
idx = futures[fut]
try:
results[idx] = fut.result()
except RateLimitError:
# You could set results[idx] = None or a default string
results[idx] = f"<failed after retries>"
return results
class AIExtractor:
def __init__(self, llm_client: LLMClient, prompt_template: str):
"""
Initializes the AIExtractor with a specific LLM client and configuration.
Args:
llm_client (LLMClient): An instance of a class that implements the LLMClient interface.
prompt_template (str): The template to use for generating prompts for the LLM.
should contain placeholders for dynamic content.
e.g., "Extract the following information: {content} based on schema: {schema}"
"""
self.llm_client = llm_client
self.prompt_template = prompt_template
def extract(self, content: str, schema: BaseModel) -> str:
"""
Extracts structured information from the given content based on the provided schema.
Args:
content (str): The raw content to extract information from.
schema (BaseModel): A Pydantic model defining the structure of the expected output.
Returns:
str: The structured JSON object as a string.
"""
prompt = self.prompt_template.format(content=content, schema=schema.model_json_schema())
# print(f"Generated prompt: {prompt}")
response = self.llm_client.call_api(prompt)
return response
class LLMClassifierExtractor(AIExtractor):
"""
Extractor that uses an LLM to classify and extract structured information from text content.
This class is designed to handle classification tasks where the LLM generates structured output based on a provided schema.
"""
def __init__(self, llm_client: LLMClient, prompt_template: str, classifier_prompt: str, ):
"""
Initializes the LLMClassifierExtractor with an LLM client and a prompt template.
Args:
llm_client (LLMClient): An instance of a class that implements the LLMClient interface.
prompt_template (str): The template to use for generating prompts for the LLM.
"""
super().__init__(llm_client, prompt_template)
self.classifier_prompt = classifier_prompt
def chunk_content(self, content: str , max_tokens: int = 500, is_clean: bool = True) -> List[str]:
"""
Splits the content into manageable chunks for processing.
Args:
content (str): The raw content to be chunked.
Returns:
List[str]: A list of text chunks.
"""
# Use the get_html_chunks function to split the content into chunks
return get_html_chunks(html=content, max_tokens=max_tokens, is_clean_html=is_clean, attr_cutoff_len=5)
def classify_chunks(self, chunks: List[str], schema: BaseModel) -> List[Dict[str, Any]]:
"""
Classifies each chunk using the LLM based on the provided schema.
Args:
chunks (List[str]): A list of text chunks to classify.
schema (BaseModel): A Pydantic model defining the structure of the expected output.
Returns:
List[Dict[str, Any]]: A list of dictionaries containing classified information.
"""
prompts = [self.classifier_prompt.format(content=chunk, schema=schema.model_json_schema()) for chunk in chunks]
classified_chunks = []
responses = self.llm_client.call_batch(prompts)
for response in responses:
# extract the json from the response
json_data = extract_markdown_json(response)
if json_data:
classified_chunks.append(json_data)
else:
classified_chunks.append({
"error": "Failed to extract JSON from response",
"relevant": 1,
})
return classified_chunks
def extract(self, content: str, schema: BaseModel) -> str:
"""
Extracts structured information from the given content based on the provided schema.
Args:
content (str): The raw content to extract information from.
schema (BaseModel): A Pydantic model defining the structure of the expected output.
Returns:
str: The structured JSON object as a string.
"""
# Chunk the HTML
chunks = self.chunk_content(content,max_tokens=1500)
print(f"Content successfully chunked into {len(chunks)} pieces.")
# Classify each chunk using the LLM
classified_chunks = self.classify_chunks(chunks, schema)
# Concatenate the positive classified chunks into a single string
print(f"Classified {classified_chunks} chunks.")
positive_chunks = []
for i, chunk in enumerate(classified_chunks):
if chunk.get("relevant", 0) > 0:
positive_chunks.append(chunks[i])
if len(positive_chunks) == 0:
positive_chunks = chunks
filtered_content = "\n\n".join(positive_chunks)
print(f"Filtered content for extraction: {filtered_content}") # Log the first 500 characters of filtered content
if not filtered_content:
print("Warning: No relevant chunks found. Returning empty response.")
return "{}"
# Generate the final prompt for extraction
prompt = self.prompt_template.format(content=filtered_content, schema=schema.model_json_schema())
print(f"Generated prompt for extraction: {prompt[:500]}...")
# Call the LLM to extract structured information
llm_response = self.llm_client.call_api(prompt)
print(f"LLM response: {llm_response[:500]}...")
# Return the structured response
if not llm_response:
print("Warning: LLM response is empty. Returning empty response.")
return "{}"
# json_response = extract_markdown_json(llm_response)
# if json_response is None:
# print("Warning: Failed to extract JSON from LLM response. Returning empty response.")
# return "{}"
return llm_response
# TODO: RAGExtractor class
class RAGExtractor(AIExtractor):
"""
RAG-enhanced extractor that uses similarity search to find relevant chunks
before performing extraction, utilizing HTML header-based chunking and SentenceTransformer embeddings.
"""
def __init__(self,
llm_client: LLMClient,
prompt_template: str,
embedding_model_path: str = "sentence-transformers/all-mpnet-base-v2",
top_k: int = 3):
"""
Initialize RAG extractor with embedding and chunking capabilities.
Args:
llm_client: LLM client for generation.
prompt_template: Template for prompts.
embedding_model_path: Path/name for the SentenceTransformer embedding model.
top_k: Number of top similar chunks to retrieve.
"""
super().__init__(llm_client, prompt_template)
self.embedding_model_path = embedding_model_path
# Initialize the SentenceTransformer model for embeddings
self.embedding_model_instance = SentenceTransformer(self.embedding_model_path)
self.top_k = top_k
@staticmethod
def _langchain_HHTS(text: str) -> List[str]:
"""
Chunks HTML text using Langchain's HTMLHeaderTextSplitter based on h1 and h2 headers.
Args:
text (str): The HTML content to chunk.
Returns:
List[str]: A list of chunked text strings (extracted from Document objects' page_content).
"""
headers_to_split_on = [
("h1", "Header 1"),
("h2", "Header 2"),
# ("h3", "Header 3"), # This header was explicitly commented out in the request
]
html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
return [doc.page_content for doc in html_splitter.split_text(text)]
def embed_text(self, text: str) -> np.ndarray:
"""
Generate embeddings for text using the initialized SentenceTransformer model.
Args:
text: The text string to embed.
Returns:
np.ndarray: The embedding vector for the input text as a NumPy array.
"""
try:
return self.embedding_model_instance.encode(text)
except Exception as e:
print(f"Warning: Embedding failed for text: '{text[:50]}...', using random embedding: {e}")
return None
def search_similar_chunks(self,
query: str,
chunks: List[str],
embeddings: np.ndarray) -> List[str]:
"""
Find the most similar chunks to the query within the given list of chunks
by calculating cosine similarity between their embeddings.
Args:
query (str): The query text whose embedding will be used for similarity comparison.
chunks (List[str]): A list of text chunks to search within.
embeddings (np.ndarray): Precomputed embeddings for the chunks, corresponding to the 'chunks' list.
Returns:
List[str]: A list of the 'top_k' most similar chunks to the query.
"""
query_embedding = self.embed_text(query)
similarities = []
if query_embedding.ndim > 1:
query_embedding = query_embedding.flatten()
for i, chunk_embedding in enumerate(embeddings):
if chunk_embedding.ndim > 1:
chunk_embedding = chunk_embedding.flatten()
norm_query = np.linalg.norm(query_embedding)
norm_chunk = np.linalg.norm(chunk_embedding)
if norm_query == 0 or norm_chunk == 0:
similarity = 0.0
else:
similarity = np.dot(query_embedding, chunk_embedding) / (norm_query * norm_chunk)
similarities.append((similarity, i))
similarities.sort(key=lambda x: x[0], reverse=True)
top_indices = [idx for _, idx in similarities[:self.top_k]]
return [chunks[i] for i in top_indices]
def extract(self, content: str, schema: BaseModel, query: str = None) -> str:
"""
Overrides the base AIExtractor's method to implement RAG-enhanced extraction.
This function first chunks the input HTML content, then uses a query to find
the most relevant chunks via embedding similarity, and finally sends these
relevant chunks as context to the LLM for structured information extraction.
Args:
content (str): The raw HTML content from which to extract information.
schema (BaseModel): A Pydantic model defining the desired output structure for the LLM.
query (str, optional): An optional query string to guide the retrieval of relevant chunks.
If not provided, a default query based on the schema will be used.
Returns:
str: The structured JSON object as a string, as generated by the LLM.
"""
start_time = time.time()
if not query:
query = f"Extract information based on the following JSON schema: {schema.model_json_schema()}"
print(f"No explicit query provided for retrieval. Using default: '{query[:100]}...'")
chunks = self._langchain_HHTS(content)
print(f"Content successfully chunked into {len(chunks)} pieces.")
combined_content_for_llm = ""
if not chunks:
print("Warning: No chunks were generated from the provided content. The entire original content will be sent to the LLM.")
combined_content_for_llm = content
else:
chunk_embeddings = np.array([self.embed_text(chunk) for chunk in chunks])
print(f"Generated embeddings for {len(chunks)} chunks.")
similar_chunks = self.search_similar_chunks(query, chunks, chunk_embeddings)
print(f"Retrieved {len(similar_chunks)} similar chunks based on the query.")
combined_content_for_llm = "\n\n".join(similar_chunks)
print(f"Combined content for LLM (truncated): '{combined_content_for_llm[:200]}...'")
prompt = self.prompt_template.format(content=combined_content_for_llm, schema=schema.model_json_schema())
print(f"Sending prompt to LLM (truncated): '{prompt[:500]}...'")
llm_response = self.llm_client.call_api(prompt)
execution_time = (time.time() - start_time) * 1000
print(f"Extraction process completed in {execution_time:.2f} milliseconds.")
print(f"LLM's final response: {llm_response}")
print("=" * 78)
return llm_response |