MCP_HTML2JSON / app.py
abdo-Mansour's picture
Update app.py
1f9040d verified
raw
history blame
12.8 kB
import json
import pandas as pd
import gradio as gr
from typing import Dict, Any, Type
from web2json.preprocessor import BasicPreprocessor
from web2json.ai_extractor import AIExtractor,LLMClassifierExtractor,NvidiaLLMClient
from web2json.postprocessor import PostProcessor
from web2json.pipeline import Pipeline
from pydantic import BaseModel, Field, create_model
import os
import dotenv
dotenv.load_dotenv()
def parse_schema_input(schema_input: str) -> Type[BaseModel]:
"""
Convert user schema input to a Pydantic BaseModel.
Supports multiple input formats:
1. JSON schema format
2. Python class definition
3. Simple field definitions
"""
schema_input = schema_input.strip()
if not schema_input:
# Default schema if none provided
return create_model('DefaultSchema',
title=(str, Field(description="Title of the content")),
content=(str, Field(description="Main content")))
try:
# Try parsing as JSON schema
if schema_input.startswith('{'):
schema_dict = json.loads(schema_input)
return json_schema_to_basemodel(schema_dict)
# Try parsing as Python class definition
elif 'class ' in schema_input and 'BaseModel' in schema_input:
return python_class_to_basemodel(schema_input)
# Try parsing as simple field definitions
else:
return simple_fields_to_basemodel(schema_input)
except Exception as e:
raise ValueError(f"Could not parse schema: {str(e)}. Please check your schema format.")
def json_schema_to_basemodel(schema_dict: Dict) -> Type[BaseModel]:
"""Convert JSON schema to BaseModel"""
fields = {}
properties = schema_dict.get('properties', {})
required = schema_dict.get('required', [])
for field_name, field_info in properties.items():
field_type = get_python_type(field_info.get('type', 'string'))
field_description = field_info.get('description', '')
if field_name in required:
fields[field_name] = (field_type, Field(description=field_description))
else:
fields[field_name] = (field_type, Field(default=None, description=field_description))
return create_model('DynamicSchema', **fields)
def python_class_to_basemodel(class_definition: str) -> Type[BaseModel]:
"""Convert Python class definition to BaseModel"""
try:
# Execute the class definition in a safe namespace
namespace = {'BaseModel': BaseModel, 'Field': Field, 'str': str, 'int': int,
'float': float, 'bool': bool, 'list': list, 'dict': dict}
exec(class_definition, namespace)
# Find the class that inherits from BaseModel
for name, obj in namespace.items():
if (isinstance(obj, type) and
issubclass(obj, BaseModel) and
obj != BaseModel):
return obj
raise ValueError("No BaseModel class found in definition")
except Exception as e:
raise ValueError(f"Invalid Python class definition: {str(e)}")
def simple_fields_to_basemodel(fields_text: str) -> Type[BaseModel]:
"""Convert simple field definitions to BaseModel"""
fields = {}
for line in fields_text.strip().split('\n'):
line = line.strip()
if not line or line.startswith('#'):
continue
# Parse field definition (e.g., "name: str = description")
if ':' in line:
parts = line.split(':', 1)
field_name = parts[0].strip()
type_and_desc = parts[1].strip()
if '=' in type_and_desc:
type_part, desc_part = type_and_desc.split('=', 1)
field_type = get_python_type(type_part.strip())
description = desc_part.strip().strip('"\'')
else:
field_type = get_python_type(type_and_desc.strip())
description = ""
fields[field_name] = (field_type, Field(description=description))
else:
# Simple field name only
field_name = line.strip()
fields[field_name] = (str, Field(description=""))
if not fields:
raise ValueError("No valid fields found in schema definition")
return create_model('DynamicSchema', **fields)
def get_python_type(type_str: str):
"""Convert type string to Python type"""
type_str = type_str.lower().strip()
type_mapping = {
'string': str, 'str': str,
'integer': int, 'int': int,
'number': float, 'float': float,
'boolean': bool, 'bool': bool,
'array': list, 'list': list,
'object': dict, 'dict': dict
}
return type_mapping.get(type_str, str)
def webpage_to_json_wrapper(content: str, is_url: bool, schema_input: str) -> Dict[str, Any]:
"""Wrapper function that converts schema input to BaseModel"""
try:
# Parse the schema input into a BaseModel
schema_model = parse_schema_input(schema_input)
# Call the original function
return webpage_to_json(content, is_url, schema_model)
except Exception as e:
return {"error": f"Schema parsing error: {str(e)}"}
def webpage_to_json(content: str, is_url: bool, schema: BaseModel) -> Dict[str, Any]:
"""
Extracts structured JSON information from a given content based on a specified schema.
This function sets up a processing pipeline that includes:
- Preprocessing the input content.
- Utilizing an AI language model to extract information according to the provided schema.
- Postprocessing the extracted output to match the exact schema requirements.
Parameters:
content (str): The input content to be analyzed. This can be direct text or a URL content.
is_url (bool): A flag indicating whether the provided content is a URL (True) or raw text (False).
schema (BaseModel): A Pydantic BaseModel defining the expected structure and data types for the output.
Returns:
Dict[str, Any]: A dictionary containing the extracted data matching the schema. In case of errors during initialization
or processing, the dictionary will include an "error" key with a descriptive message.
"""
prompt_template = """Extract the following information from the provided content according to the specified schema.
Content to analyze:
{content}
Schema requirements:
{schema}
Instructions:
- Extract only information that is explicitly present in the content
- Follow the exact structure and data types specified in the schema
- If a required field cannot be found, indicate this clearly
- Preserve the original formatting and context where relevant
- Return the extracted data in the format specified by the schema"""
classification_prompt_template = """
# HTML Chunk Relevance Classification Prompt
You are an HTML content classifier. Your task is to analyze an HTML chunk against a given schema and determine if the content is relevant.
## Instructions:
1. Carefully examine the provided HTML chunk
2. Compare it against the given schema/criteria
3. Determine if the HTML chunk contains content that matches or is relevant to the schema
4. Respond with ONLY a JSON object containing a single field "relevant" with value 1 (relevant) or 0 (not relevant)
## Input Format:
**Schema/Criteria:**
{schema}
**HTML Chunk:**
```html
{content}
```
## Output Format:
Your response must be ONLY a valid JSON object with no additional text:
```json
{{
"relevant": 1
}}
```
OR
```json
{{
"relevant": 0
}}
```
## Classification Rules:
- Output 1 if the HTML chunk contains content that matches the schema criteria
- Output 0 if the HTML chunk does not contain relevant content
- Consider semantic meaning, not just exact keyword matches
- Look at text content, attributes, structure, and context
- Ignore purely structural HTML elements (like divs, spans) unless they contain relevant content
- Be STRICT in your evaluation - only mark as relevant (1) if there is clear, meaningful content that directly relates to the schema
- Empty elements, placeholder text, navigation menus, headers/footers, and generic UI components should typically be marked as not relevant (0)
- The HTML chunk does not need to contain ALL schema information, but it must contain SUBSTANTIAL and SPECIFIC content related to the schema
CRITICAL: Your entire response MUST be exactly one JSON object. DO NOT include any explanations, reasoning, markdown formatting, code blocks, or additional text. Output ONLY the raw JSON object.
"""
# Initialize pipeline components
# TODO: improve the RAG system and optimize (don't instantiate every time)
preprocessor = BasicPreprocessor(config={'keep_tags': True})
try:
# llm = GeminiLLMClient(config={'api_key': os.getenv('GEMINI_API_KEY')})
llm = NvidiaLLMClient(config={'api_key': os.getenv('NVIDIA_API_KEY'),'model_name': 'qwen/qwen2.5-7b-instruct'})
except Exception as e:
return {"error": f"Failed to initialize LLM client: {str(e)}"}
# ai_extractor = RAGExtractor(llm_client=llm, prompt_template=prompt_template)
ai_extractor = LLMClassifierExtractor(llm_client=llm, prompt_template=prompt_template, classifier_prompt=classification_prompt_template)
postprocessor = PostProcessor()
pipeline = Pipeline(preprocessor, ai_extractor, postprocessor)
try:
result = pipeline.run(content, is_url, schema)
print("-"*80)
print(f"Processed result: {result}")
return result
except Exception as e:
return {"error": f"Processing error: {str(e)}"}
# Example schemas for the user
example_schemas = """
**Example Schema Formats:**
1. **Simple field definitions:**
```
title: str = Page title
price: float = Product price
description: str = Product description
available: bool = Is available
```
2. **JSON Schema:**
```json
{
"properties": {
"title": {"type": "string", "description": "Page title"},
"price": {"type": "number", "description": "Product price"},
"description": {"type": "string", "description": "Product description"}
},
"required": ["title"]
}
```
3. **Python Class Definition:**
```python
class ProductSchema(BaseModel):
title: str = Field(description="Product title")
price: float = Field(description="Product price")
description: str = Field(description="Product description")
available: bool = Field(default=False, description="Availability status")
```
"""
# Build Gradio Interface
demo = gr.Interface(
fn=webpage_to_json_wrapper,
inputs=[
gr.Textbox(
label="Content (URL or Raw Text)",
lines=10,
placeholder="Enter URL or paste raw HTML/text here."
),
gr.Checkbox(label="Content is URL?", value=False),
gr.Textbox(
label="Schema Definition",
lines=15,
placeholder="Define your extraction schema (see examples below)",
info=example_schemas
)
],
outputs=gr.JSON(label="Output JSON"),
title="Webpage to JSON Converter",
description="Convert web pages or raw text into structured JSON using customizable schemas. Define your schema using simple field definitions, JSON schema, or Python class syntax.",
examples=[
[
"https://example.com",
True,
"title: str = Page title\nprice: float = Product price\ndescription: str = Description"
],
[
"<h1>Sample Product</h1><p>Price: $29.99</p><p>Great quality item</p>",
False,
'''{
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Name of the product"
},
"price": {
"type": "number",
"description": "Price of the product"
},
"description": {
"type": "string",
"description": "Detailed description of the product"
},
"availability": {
"type": "boolean",
"description": "Whether the product is in stock (true) or not (false)"
}
},
"required": ["title", "price"]
}'''
]
]
)
if __name__ == "__main__":
demo.launch(mcp_server=True)