File size: 28,091 Bytes
4ed1b4f
c67f04e
 
4ed1b4f
c67f04e
 
 
 
 
4ed1b4f
 
c67f04e
 
2ae29dd
 
c67f04e
 
 
 
4ed1b4f
 
2ae29dd
d053923
 
 
251790a
 
 
2ae29dd
4ed1b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d053923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed1b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67f04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251790a
c67f04e
251790a
c67f04e
 
 
 
 
 
 
 
 
 
4e62a86
c67f04e
 
 
 
 
 
 
 
 
 
b4fe9b6
c67f04e
 
 
 
7a692a6
4e62a86
 
c67f04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e62a86
c67f04e
 
 
 
2ae29dd
 
d053923
2ae29dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4fe9b6
d053923
 
 
 
 
 
b4fe9b6
 
d053923
b4fe9b6
 
 
 
251790a
b4fe9b6
251790a
 
b4fe9b6
251790a
b4fe9b6
 
 
 
 
 
 
 
 
d053923
 
2ae29dd
d053923
 
 
 
2ae29dd
251790a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e62a86
251790a
 
 
 
 
 
 
 
 
 
 
 
 
7a692a6
4e62a86
7a692a6
251790a
2ae29dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4fe9b6
2ae29dd
b4fe9b6
2ae29dd
 
 
 
 
b4fe9b6
2ae29dd
 
b4fe9b6
2ae29dd
b4fe9b6
 
 
 
2ae29dd
 
 
 
 
b4fe9b6
2ae29dd
b4fe9b6
 
 
 
 
 
 
 
 
 
 
 
2ae29dd
b4fe9b6
 
 
 
 
 
 
 
 
 
 
 
2ae29dd
 
 
 
 
 
 
 
c67f04e
4ed1b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67f04e
 
 
 
 
 
d053923
c67f04e
 
 
 
 
 
 
 
2ae29dd
c67f04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae29dd
d053923
2ae29dd
c67f04e
2ae29dd
d053923
2ae29dd
d053923
b4fe9b6
d053923
2ae29dd
d053923
2ae29dd
 
c67f04e
 
 
 
 
 
2ae29dd
c67f04e
d053923
251790a
 
d053923
251790a
 
2ae29dd
d053923
b4fe9b6
251790a
 
 
d053923
 
251790a
 
 
2ae29dd
 
c67f04e
 
 
2ae29dd
c67f04e
2ae29dd
c67f04e
2ae29dd
7a692a6
2ae29dd
 
4ed1b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae29dd
4ed1b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import os
import time
import numpy as np
from google import genai
from openai import OpenAI
import time
import random
from openai import RateLimitError
from functools import wraps
from google.genai import types
from pydantic import BaseModel
from concurrent.futures import ThreadPoolExecutor
from html_chunking import get_html_chunks
from langchain_nvidia_ai_endpoints import NVIDIARerank
from langchain_core.documents import Document
from abc import ABC, abstractmethod
from typing import List, Any, Dict, Tuple, Optional
import re
import json
from langchain_text_splitters import HTMLHeaderTextSplitter
from sentence_transformers import SentenceTransformer
import requests
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from typing import List, Dict
from tenacity import retry, wait_exponential, stop_after_attempt
import trafilatura


class LLMClient(ABC):
    """
    Abstract base class for calling LLM APIs.
    """
    def __init__(self, config: dict = None):
        """
        Initializes the LLMClient with a configuration dictionary.
        
        Args:
            config (dict): Configuration settings for the LLM client.
        """
        self.config = config or {}

    @abstractmethod
    def call_api(self, prompt: str) -> str:
        """
        Call the underlying LLM API with the given prompt.
        
        Args:
            prompt (str): The prompt or input text for the LLM.

        Returns:
            str: The response from the LLM.
        """
        pass

class RerankerClient(ABC):
    """
    Abstract base class for reranker APIs.
    """
    def __init__(self, config: dict = None):
        """
        Initializes the RerankerClient with a configuration dictionary.

        Args:
            config (dict): Configuration settings for the reranker client.
        """
        self.config = config or {}

    @abstractmethod
    def rerank(self, query: str, passages: List[str], top_k: int = 3) -> List[str]:
        """
        Rerank passages based on relevance to query.

        Args:
            query (str): Query string.
            passages (List[str]): List of passages.
            top_k (int): Number of top passages to return.

        Returns:
            List[str]: Top-k most relevant passages.
        """
        pass


class GeminiLLMClient(LLMClient):
    """
    Concrete implementation of LLMClient for the Gemini API.
    """

    def __init__(self, config: dict):
        """
        Initializes the GeminiLLMClient with an API key, model name, and optional generation settings.

        Args:
            config (dict): Configuration containing:
                - 'api_key': (optional) API key for Gemini (falls back to GEMINI_API_KEY env var)
                - 'model_name': (optional) the model to use (default 'gemini-2.0-flash')
                - 'generation_config': (optional) dict of GenerateContentConfig parameters
        """
        api_key = config.get("api_key") or os.environ.get("GEMINI_API_KEY")
        if not api_key:
            raise ValueError(
                "API key for Gemini must be provided in config['api_key'] or GEMINI_API_KEY env var."
            )
        self.client = genai.Client(api_key=api_key)
        self.model_name = config.get("model_name", "gemini-2.0-flash")
        # allow custom generation settings, fallback to sensible defaults
        gen_conf = config.get("generation_config", {})
        self.generate_config = types.GenerateContentConfig(
            response_mime_type=gen_conf.get("response_mime_type", "text/plain"),
            temperature=gen_conf.get("temperature"),
            max_output_tokens=gen_conf.get("max_output_tokens"),
            top_p=gen_conf.get("top_p"),
            top_k=gen_conf.get("top_k"),
            # add any other fields you want to expose
        )

    def call_api(self, prompt: str) -> str:
        """
        Call the Gemini API with the given prompt (non-streaming).

        Args:
            prompt (str): The input text for the API.

        Returns:
            str: The generated text from the Gemini API.
        """
        contents = [
            types.Content(
                role="user",
                parts=[types.Part.from_text(text=prompt)],
            )
        ]

        # Non-streaming call returns a full response object
        response = self.client.models.generate_content(
            model=self.model_name,
            contents=contents,
            config=self.generate_config,
        )

        # Combine all output parts into a single string
        return response.text

def extract_markdown_json(text: str) -> Optional[Dict[str, Any]]:
        """
        Find the first Markdown ```json ...``` block in `text`,
        parse it as JSON, and return the resulting dict.
        Returns None if no valid JSON block is found.
        """
        # 1) Look specifically for a ```json code fence
        fence_match = re.search(
            r"```json\s*(\{.*?\})\s*```",
            text,
            re.DOTALL | re.IGNORECASE
        )
        if not fence_match:
            return None

        json_str = fence_match.group(1)
        try:
            return json.loads(json_str)
        except json.JSONDecodeError:
            return None

def retry_on_ratelimit(max_retries=5, base_delay=1.0, max_delay=10.0):
    def deco(fn):
        @wraps(fn)
        def wrapped(*args, **kwargs):
            delay = base_delay
            for attempt in range(max_retries):
                try:
                    return fn(*args, **kwargs)
                except RateLimitError:
                    if attempt == max_retries - 1:
                        # give up
                        raise
                    # back off + jitter
                    sleep = min(max_delay, delay) + random.uniform(0, delay)
                    time.sleep(sleep)
                    delay *= 2
            # unreachable
        return wrapped
    return deco
class NvidiaLLMClient(LLMClient):
    """
    Concrete implementation of LLMClient for the NVIDIA API (non-streaming).
    """

    def __init__(self, config: dict):
        """
        Initializes the NvidiaLLMClient with an API key, model name, and optional generation settings.

        Args:
            config (dict): Configuration containing:
                - 'api_key': (optional) API key for NVIDIA (falls back to NVIDIA_API_KEY env var)
                - 'model_name': (optional) the model to use (default 'google/gemma-3-1b-it')
                - 'generation_config': (optional) dict of generation parameters like temperature, top_p, etc.
        """
        api_key = config.get("api_key") or os.environ.get("NVIDIA_API_KEY")
        if not api_key:
            raise ValueError(
                "API key for NVIDIA must be provided in config['api_key'] or NVIDIA_API_KEY env var."
            )

        self.client = OpenAI(
            base_url="https://integrate.api.nvidia.com/v1",
            api_key=api_key
        )
        self.model_name = config.get("model_name", "google/gemma-3-1b-it")

        # Store generation settings with sensible defaults
        gen_conf = config.get("generation_config", {})
        self.temperature = gen_conf.get("temperature", 0)
        self.top_p = gen_conf.get("top_p", 0.7)
        self.max_tokens = gen_conf.get("max_tokens", 8192)

    def set_model(self, model_name: str):
        """
        Set the model name for the NVIDIA API client.

        Args:
            model_name (str): The name of the model to use.
        """
        self.model_name = model_name

    @retry_on_ratelimit(max_retries=20, base_delay=0.5, max_delay=5.0)
    def call_api(self, prompt: str) -> str:
        """
        Call the NVIDIA API with the given prompt (non-streaming).

        Args:
            prompt (str): The input text for the API.

        Returns:
            str: The generated text from the NVIDIA API.
        """
        print("prompt: ", prompt)
        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=[{"role": "user", "content": prompt}],
            temperature=self.temperature,
            top_p=self.top_p,
            max_tokens=self.max_tokens,
            extra_body={"chat_template_kwargs": {"thinking":True}},
            # stream is omitted (defaults to False)
        )
        # print("DONE")
        # For the standard (non-streaming) response:
        # choices[0].message.content holds the generated text
        return response.choices[0].message.content
    
    def call_batch(self, prompts, max_workers=8):
        """
        Parallel batch with isolated errors: each prompt that still
        fails after retries will raise, but others succeed.
        """
        from concurrent.futures import ThreadPoolExecutor, as_completed
        results = [None] * len(prompts)
        with ThreadPoolExecutor(max_workers=max_workers) as ex:
            futures = {ex.submit(self.call_api, p): i for i, p in enumerate(prompts)}
            for fut in as_completed(futures):
                idx = futures[fut]
                try:
                    results[idx] = fut.result()
                    print("DONE")
                except RateLimitError:
                    # You could set results[idx] = None or a default string
                    results[idx] = f"<failed after retries>"
        return results
    

class NvidiaRerankerClient(RerankerClient):
    """
    Concrete implementation of LLMClient for the NVIDIA API (non-streaming).
    """

    def __init__(self, config: dict):
        self.model_name = config.get("model_name", "nvidia/llama-3.2-nv-rerankqa-1b-v2")
        self.client = NVIDIARerank(
            model=self.model_name,
            api_key=os.getenv("NVIDIA_API_KEY"),
        )

    def set_model(self, model_name: str):
        """
        Set the model name for the NVIDIA API client.

        Args:
            model_name (str): The name of the model to use.
        """
        self.model_name = model_name

    @retry_on_ratelimit(max_retries=6, base_delay=0.5, max_delay=5.0)
    def rerank(self, query: str, passages: List[str], top_k: int = 3, threshold: float = 0.5) -> List[Document]:
        # 1. Prepare and send documents for scoring
        docs = [Document(page_content=p) for p in passages]
        scored_docs = self.client.compress_documents(
            query=str(query),
            documents=docs
        )

        # 2. Extract raw scores and compute sigmoid probabilities
        raw_scores = np.array([doc.metadata['relevance_score'] for doc in scored_docs], dtype=float)
        print(f"raw scores {raw_scores}")
        p_scores = 1 / (1 + np.exp(-raw_scores))
        print(f"Sigmoid scores: {p_scores}")

        # 3. Max normalization
        max_score = np.max(p_scores)
        if max_score == 0:
            norm_scores = np.zeros_like(p_scores)
        else:
            norm_scores = p_scores / max_score
        print(f"Normalized scores: {norm_scores}")

        # 4. Filter by threshold using normalized scores
        scored_pairs = [(doc, norm) for doc, norm in zip(scored_docs, norm_scores) if norm > threshold]
        print(f"Filtered pairs:\n{scored_pairs}")

        # 5. Return top_k documents (already sorted by model, no need to re-sort)
        top_docs = [doc.page_content for doc, _ in scored_pairs]
        return top_docs



    
    # TODO: will I need it ?
    # def call_batch(self, prompts, max_workers=8):
    #     pass

def retry_on_error(fn):
    """Simple retry decorator (exponential back-off, max 6 tries)."""
    return retry(
        wait=wait_exponential(multiplier=0.5, min=0.5, max=5),
        stop=stop_after_attempt(6),
        reraise=True,
    )(fn)


class ModalRerankerClient(RerankerClient):
    """Client for the Modal Qwen3-Reranker endpoint (non-streaming)."""

    def __init__(self, endpoint_url: str):
        self.endpoint_url = endpoint_url.rstrip("/")  # ensure no trailing slash

    def set_endpoint(self, url: str):
        self.endpoint_url = url.rstrip("/")

    @retry_on_error
    def rerank(
        self,
        query: str,
        passages: List[str],
        threshold: float = 0.5,
    ) -> List[Document]:
        """Call the remote endpoint and return filtered passages."""
        if not isinstance(query,str):
            query = str(query)
        payload = {"query": query, "passages": passages}
        print(payload)
        res = requests.post(self.endpoint_url, json=payload, timeout=60)
        res.raise_for_status()
        data = res.json()

        # The endpoint already returns probabilities (0-1). Extract them.
        ranked = data.get("ranked_passages", [])
        # Extract scores
        scores = np.array([p["score"] for p in ranked], dtype=float)
        # Max normalization
        max_score = scores.max() if len(scores) > 0 else 1.0
        # max_score = 1
        if max_score == 0:
            norm_scores = np.zeros_like(scores)
        else:
            norm_scores = scores / max_score
        # Filter by threshold using normalized scores
        filtered = [
            (p, norm) for p, norm in zip(ranked, norm_scores) if norm >= threshold
        ]
        # Convert to LangChain Documents
        docs = [
            Document(page_content=p["passage"], metadata={"score": p["score"], "norm_score": norm})
            for p, norm in filtered
        ]
        
        # docs.reverse()

        return docs

class HFRerankerClient(LLMClient):
    """
    Hugging Face Reranker client using Qwen/Qwen1.5-MoE-A14B-Chat reranking style (0.6B variant).
    """

    def __init__(self, model_name: str = "Qwen/Qwen3-Reranker-0.6B", device: str = None):
        """
        Initialize the Hugging Face reranker.
        """
        self.model_name = model_name
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name).to(self.device)
        self.token_true_id = self.tokenizer.convert_tokens_to_ids("yes")
        self.token_false_id = self.tokenizer.convert_tokens_to_ids("no")

    def rerank(self, query: str, passages: List[str], top_k: int = 3, threshold: float = 0.5) -> List[str]:
        """
        Rerank passages based on relevance to query using min-max normalized scores.

        Args:
            query (str): Query string.
            passages (List[str]): List of passages.
            top_k (int): Number of top passages to return.
            threshold (float): Minimum normalized score to include passage.

        Returns:
            List[str]: Top-k most relevant passages above threshold.
        """
        inputs = [
            self.tokenizer(f"{query} [SEP] {p}", return_tensors="pt", truncation=True, padding=True).to(self.device)
            for p in passages
        ]
        scores = []

        with torch.no_grad():
            for inp in inputs:
                logits = self.model(**inp).logits
                # print("logits:", logits)
                score = torch.softmax(logits, dim=1)[0, 1].item()  # probability of relevance
                scores.append(score)
        
        print(f"Softmax Scores: {scores}")

        # Min-max normalize the scores
        scores_np = np.array(scores)
        min_score = scores_np.min()
        max_score = scores_np.max()
        if max_score == min_score:
            norm_scores = np.ones_like(scores_np)
        else:
            norm_scores = (scores_np - min_score) / (max_score - min_score)

        print(f"Normalized Scores: {norm_scores}")
        # Filter based on normalized threshold
        filtered = [(i, s) for i, s in enumerate(norm_scores) if s > threshold]
        print(f"Filtered: {filtered}")

        # Sort by normalized score descending
        filtered.sort(key=lambda x: x[1], reverse=True)

        # Select top_k passages
        top_passages = [passages[i] for i, _ in filtered]

        return top_passages

    
    @retry_on_ratelimit(max_retries=6, base_delay=0.5, max_delay=5.0)
    def call_api(self, prompt: str) -> str:
        pass
    
    def call_batch(self, prompts, max_workers=8):
        pass


class AIExtractor:
    def __init__(self, llm_client: LLMClient, prompt_template: str):
        """
        Initializes the AIExtractor with a specific LLM client and configuration.

        Args:
            llm_client (LLMClient): An instance of a class that implements the LLMClient interface.
            prompt_template (str): The template to use for generating prompts for the LLM.
            should contain placeholders for dynamic content. 
            e.g., "Extract the following information: {content} based on schema: {schema}"
        """
        self.llm_client = llm_client
        self.prompt_template = prompt_template

    def extract(self, content: str, schema: BaseModel) -> str:
        """
        Extracts structured information from the given content based on the provided schema.

        Args:
            content (str): The raw content to extract information from.
            schema (BaseModel): A Pydantic model defining the structure of the expected output.

        Returns:
            str: The structured JSON object as a string.
        """
        prompt = self.prompt_template.format(content=content, schema=schema.model_json_schema())
        # print(f"Generated prompt: {prompt}")
        response = self.llm_client.call_api(prompt)
        return response
    
class LLMClassifierExtractor(AIExtractor):
    """
    Extractor that uses an LLM to classify and extract structured information from text content.
    This class is designed to handle classification tasks where the LLM generates structured output based on a provided schema.
    """
    def __init__(self, reranker: RerankerClient, llm_client: LLMClient, prompt_template: str, classifier_prompt: str, ):
        """
        Initializes the LLMClassifierExtractor with an LLM client and a prompt template.

        Args:
            llm_client (LLMClient): An instance of a class that implements the LLMClient interface.
            prompt_template (str): The template to use for generating prompts for the LLM.
        """
        super().__init__(llm_client, prompt_template)
        self.reranker = reranker
        self.classifier_prompt = classifier_prompt

    def chunk_content(self, content: str , max_tokens: int = 500, is_clean: bool = True) -> List[str]:
        """
        Splits the content into manageable chunks for processing.

        Args:
            content (str): The raw content to be chunked.

        Returns:
            List[str]: A list of text chunks.
        """
        # Use the get_html_chunks function to split the content into chunks
        return get_html_chunks(html=content, max_tokens=max_tokens, is_clean_html=is_clean, attr_cutoff_len=5)
    

    def classify_chunks(self, passages, top_k=3, hf: bool = False):  # reranker
        # print("TIME TO CLASSIFY")
        query = self.classifier_prompt

        if hf:
            # print("Using Hugging Face reranker for classification.")
            return self.reranker.rerank(query, passages, top_k=top_k)
        response = self.reranker.rerank(query,passages)
        print(f"response: {response}")
        # print("DONNNNE")
        # NVIDIA reranker path
        return response

    def extract(self, content, schema, hf: bool = False):
        """
        Extracts structured information from the given content based on the provided schema.

        Args:
            content (str): The raw content to extract information from.
            schema (BaseModel): A Pydantic model defining the structure of the expected output.
            hf (bool): Whether to use the Hugging Face reranker or NVIDIA (default).
        """
        # print("TIME TO EXTRACT")
        chunks = self.chunk_content(content, max_tokens=500)
        print(f"Content successfully chunked into {len(chunks)}.")
        # print(f"Content successfully chunked: {chunks}")
        # chunks = [trafilatura.extract(chunk,favor_recall=True) for chunk in chunks]
        # chunks = [chunk for chunk in chunks if chunk is not None]
        classified_chunks = self.classify_chunks(chunks, hf=hf)  # conditional reranker
        # extracting the content

        if isinstance(classified_chunks[0],Document):
            classified_chunks = [chunk.page_content for chunk in classified_chunks]
        print(f"Classified Chunks {len(classified_chunks)}")
        # print(classified_chunks)
        # print('='*80)
        # NOTE: More preprocesing
        # classified_chunks = [trafilatura.extract(chunk,favor_recall=True) for chunk in classified_chunks]
        # classified_chunks = [chunk for chunk in classified_chunks if chunk is not None]
        filtered_content = "\n\n".join(classified_chunks)

        if not filtered_content:
            print("Warning: No relevant chunks found. Returning empty response.")
            return "{}"

        prompt = self.prompt_template.format(content=filtered_content, schema=schema.model_json_schema())
        # print(f"Generated prompt for extraction: {prompt[:500]}...")
        llm_response = self.llm_client.call_api(prompt)
        # print(f"LLM response: {llm_response[:500]}...")
        
        return llm_response or "{}"


# TODO: RAGExtractor class
class RAGExtractor(AIExtractor):
    """
    RAG-enhanced extractor that uses similarity search to find relevant chunks
    before performing extraction, utilizing HTML header-based chunking and SentenceTransformer embeddings.
    """

    def __init__(self,
                 llm_client: LLMClient,
                 prompt_template: str,
                 embedding_model_path: str = "sentence-transformers/all-mpnet-base-v2",
                 top_k: int = 3):
        """
        Initialize RAG extractor with embedding and chunking capabilities.

        Args:
            llm_client: LLM client for generation.
            prompt_template: Template for prompts.
            embedding_model_path: Path/name for the SentenceTransformer embedding model.
            top_k: Number of top similar chunks to retrieve.
        """
        super().__init__(llm_client, prompt_template)
        self.embedding_model_path = embedding_model_path
        # Initialize the SentenceTransformer model for embeddings
        self.embedding_model_instance = SentenceTransformer(self.embedding_model_path)
        self.top_k = top_k

    @staticmethod
    def _langchain_HHTS(text: str) -> List[str]:
        """
        Chunks HTML text using Langchain's HTMLHeaderTextSplitter based on h1 and h2 headers.

        Args:
            text (str): The HTML content to chunk.

        Returns:
            List[str]: A list of chunked text strings (extracted from Document objects' page_content).
        """
        headers_to_split_on = [
            ("h1", "Header 1"),
            ("h2", "Header 2"),
            # ("h3", "Header 3"), # This header was explicitly commented out in the request
        ]
        html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
        return [doc.page_content for doc in html_splitter.split_text(text)]

    def embed_text(self, text: str) -> np.ndarray:
        """
        Generate embeddings for text using the initialized SentenceTransformer model.

        Args:
            text: The text string to embed.

        Returns:
            np.ndarray: The embedding vector for the input text as a NumPy array.
        """
        try:
            return self.embedding_model_instance.encode(text)
        except Exception as e:
            print(f"Warning: Embedding failed for text: '{text[:50]}...', using random embedding: {e}")

            return None

    def search_similar_chunks(self,
                              query: str,
                              chunks: List[str],
                              embeddings: np.ndarray) -> List[str]:
        """
        Find the most similar chunks to the query within the given list of chunks
        by calculating cosine similarity between their embeddings.

        Args:
            query (str): The query text whose embedding will be used for similarity comparison.
            chunks (List[str]): A list of text chunks to search within.
            embeddings (np.ndarray): Precomputed embeddings for the chunks, corresponding to the 'chunks' list.

        Returns:
            List[str]: A list of the 'top_k' most similar chunks to the query.
        """
        query_embedding = self.embed_text(query)

        similarities = []

        if query_embedding.ndim > 1:
            query_embedding = query_embedding.flatten()

        for i, chunk_embedding in enumerate(embeddings):
            if chunk_embedding.ndim > 1:
                chunk_embedding = chunk_embedding.flatten()

            norm_query = np.linalg.norm(query_embedding)
            norm_chunk = np.linalg.norm(chunk_embedding)

            if norm_query == 0 or norm_chunk == 0:
                similarity = 0.0
            else:
                similarity = np.dot(query_embedding, chunk_embedding) / (norm_query * norm_chunk)
            similarities.append((similarity, i))

        similarities.sort(key=lambda x: x[0], reverse=True)
        top_indices = [idx for _, idx in similarities[:self.top_k]]

        return [chunks[i] for i in top_indices]

    def extract(self, content: str, schema: BaseModel, query: str = None) -> str:
        """
        Overrides the base AIExtractor's method to implement RAG-enhanced extraction.
        This function first chunks the input HTML content, then uses a query to find
        the most relevant chunks via embedding similarity, and finally sends these
        relevant chunks as context to the LLM for structured information extraction.

        Args:
            content (str): The raw HTML content from which to extract information.
            schema (BaseModel): A Pydantic model defining the desired output structure for the LLM.
            query (str, optional): An optional query string to guide the retrieval of relevant chunks.
                                   If not provided, a default query based on the schema will be used.

        Returns:
            str: The structured JSON object as a string, as generated by the LLM.
        """
        start_time = time.time()

        if not query:
            query = f"Extract information based on the following JSON schema: {schema.model_json_schema()}"
            # print(f"No explicit query provided for retrieval. Using default: '{query[:100]}...'")

        chunks = self._langchain_HHTS(content)
        print(f"Content successfully chunked into {len(chunks)} pieces.")

        combined_content_for_llm = ""
        if not chunks:
            print("Warning: No chunks were generated from the provided content. The entire original content will be sent to the LLM.")
            combined_content_for_llm = content
        else:
            chunk_embeddings = np.array([self.embed_text(chunk) for chunk in chunks])
            print(f"Generated embeddings for {len(chunks)} chunks.")

            similar_chunks = self.search_similar_chunks(query, chunks, chunk_embeddings)
            print(f"Retrieved {len(similar_chunks)} similar chunks based on the query.")

            combined_content_for_llm = "\n\n".join(similar_chunks)
            print(f"Combined content for LLM (truncated): '{combined_content_for_llm[:200]}...'")

        prompt = self.prompt_template.format(content=combined_content_for_llm, schema=schema.model_json_schema())
        print(f"Sending prompt to LLM (truncated): '{prompt[:500]}...'")
        llm_response = self.llm_client.call_api(prompt)

        execution_time = (time.time() - start_time) * 1000
        print(f"Extraction process completed in {execution_time:.2f} milliseconds.")
        print(f"LLM's final response: {llm_response}")
        print("=" * 78)

        return llm_response