Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,829 Bytes
d65c9b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
# Plug&Play Feature Injection
import torch
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from random import randrange
import PIL
import numpy as np
from tqdm import tqdm
from torch.cuda.amp import custom_bwd, custom_fwd
import torch.nn.functional as F
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
DDIMScheduler,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
StableDiffusionPipelineOutput,
retrieve_timesteps,
PipelineImageInput
)
from src.eunms import Scheduler_Type, Gradient_Averaging_Type, Epsilon_Update_Type
def _backward_ddim(x_tm1, alpha_t, alpha_tm1, eps_xt):
"""
let a = alpha_t, b = alpha_{t - 1}
We have a > b,
x_{t} - x_{t - 1} = sqrt(a) ((sqrt(1/b) - sqrt(1/a)) * x_{t-1} + (sqrt(1/a - 1) - sqrt(1/b - 1)) * eps_{t-1})
From https://arxiv.org/pdf/2105.05233.pdf, section F.
"""
a, b = alpha_t, alpha_tm1
sa = a**0.5
sb = b**0.5
return sa * ((1 / sb) * x_tm1 + ((1 / a - 1) ** 0.5 - (1 / b - 1) ** 0.5) * eps_xt)
class SDDDIMPipeline(StableDiffusionImg2ImgPipeline):
# @torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
strength: float = 1.0,
num_inversion_steps: Optional[int] = 50,
timesteps: List[int] = None,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: int = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
opt_lr: float = 0.001,
opt_iters: int = 1,
opt_none_inference_steps: bool = False,
opt_loss_kl_lambda: float = 10.0,
num_inference_steps: int = 50,
num_aprox_steps: int = 100,
**kwargs,
):
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
strength,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if ip_adapter_image is not None:
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
# 4. Preprocess image
image = self.image_processor.preprocess(image)
# 5. set timesteps
timesteps, num_inversion_steps = retrieve_timesteps(self.scheduler, num_inversion_steps, device, timesteps)
timesteps, num_inversion_steps = self.get_timesteps(num_inversion_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
_, num_inference_steps = retrieve_timesteps(self.scheduler_inference, num_inference_steps, device, None)
# 6. Prepare latent variables
with torch.no_grad():
latents = self.prepare_latents(
image,
latent_timestep,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Add image embeds for IP-Adapter
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
# 7.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
prev_timestep = None
self.prev_z = torch.clone(latents)
self.prev_z4 = torch.clone(latents)
self.z_0 = torch.clone(latents)
g_cpu = torch.Generator().manual_seed(7865)
self.noise = randn_tensor(self.z_0.shape, generator=g_cpu, device=self.z_0.device, dtype=self.z_0.dtype)
all_latents = [latents.clone()]
with self.progress_bar(total=num_inversion_steps) as progress_bar:
for i, t in enumerate(reversed(timesteps)):
z_tp1 = self.inversion_step(latents,
t,
prompt_embeds,
added_cond_kwargs,
prev_timestep=prev_timestep,
num_aprox_steps=num_aprox_steps)
if t in self.scheduler_inference.timesteps:
z_tp1 = self.optimize_z_tp1(z_tp1,
latents,
t,
prompt_embeds,
added_cond_kwargs,
nom_opt_iters=opt_iters,
lr=opt_lr,
opt_loss_kl_lambda=opt_loss_kl_lambda)
prev_timestep = t
latents = z_tp1
all_latents.append(latents.clone())
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
image = latents
# Offload all models
self.maybe_free_model_hooks()
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None), all_latents
def noise_regularization(self, e_t, noise_pred_optimal):
for _outer in range(self.cfg.num_reg_steps):
if self.cfg.lambda_kl>0:
_var = torch.autograd.Variable(e_t.detach().clone(), requires_grad=True)
# l_kld = self.kl_divergence(_var)
l_kld = self.patchify_latents_kl_divergence(_var, noise_pred_optimal)
l_kld.backward()
_grad = _var.grad.detach()
_grad = torch.clip(_grad, -100, 100)
e_t = e_t - self.cfg.lambda_kl*_grad
if self.cfg.lambda_ac>0:
for _inner in range(self.cfg.num_ac_rolls):
_var = torch.autograd.Variable(e_t.detach().clone(), requires_grad=True)
l_ac = self.auto_corr_loss(_var)
l_ac.backward()
_grad = _var.grad.detach()/self.cfg.num_ac_rolls
e_t = e_t - self.cfg.lambda_ac*_grad
e_t = e_t.detach()
return e_t
def auto_corr_loss(self, x, random_shift=True):
B,C,H,W = x.shape
assert B==1
x = x.squeeze(0)
# x must be shape [C,H,W] now
reg_loss = 0.0
for ch_idx in range(x.shape[0]):
noise = x[ch_idx][None, None,:,:]
while True:
if random_shift: roll_amount = randrange(noise.shape[2]//2)
else: roll_amount = 1
reg_loss += (noise*torch.roll(noise, shifts=roll_amount, dims=2)).mean()**2
reg_loss += (noise*torch.roll(noise, shifts=roll_amount, dims=3)).mean()**2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
return reg_loss
def kl_divergence(self, x):
_mu = x.mean()
_var = x.var()
return _var + _mu**2 - 1 - torch.log(_var+1e-7)
# @torch.no_grad()
def inversion_step(
self,
z_t: torch.tensor,
t: torch.tensor,
prompt_embeds,
added_cond_kwargs,
prev_timestep: Optional[torch.tensor] = None,
num_aprox_steps: int = 100
) -> torch.tensor:
extra_step_kwargs = {}
avg_range = self.cfg.gradient_averaging_first_step_range if t.item() < 250 else self.cfg.gradient_averaging_step_range
# When doing more then one approximation step in the first step it adds artifacts
if t.item() < 250:
num_aprox_steps = min(self.cfg.max_num_aprox_steps_first_step, num_aprox_steps)
approximated_z_tp1 = z_t.clone()
nosie_pred_avg = None
if self.cfg.num_reg_steps > 0:
z_tp1_forward = self.scheduler.add_noise(self.z_0, self.noise, t.view((1))).detach()
latent_model_input = torch.cat([z_tp1_forward] * 2) if self.do_classifier_free_guidance else z_tp1_forward
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
# predict the noise residual
noise_pred_optimal = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0].detach()
else:
noise_pred_optimal = None
for i in range(num_aprox_steps + 1):
latent_model_input = torch.cat([approximated_z_tp1] * 2) if self.do_classifier_free_guidance else approximated_z_tp1
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if i >= avg_range[0] and i < avg_range[1]:
j = i - avg_range[0]
if nosie_pred_avg is None:
nosie_pred_avg = noise_pred.clone()
else:
nosie_pred_avg = j * nosie_pred_avg / (j + 1) + noise_pred / (j + 1)
if self.cfg.gradient_averaging_type == Gradient_Averaging_Type.EACH_ITER:
noise_pred = nosie_pred_avg.clone()
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if i >= avg_range[0] or (self.cfg.gradient_averaging_type == Gradient_Averaging_Type.NONE and i > 0):
noise_pred = self.noise_regularization(noise_pred, noise_pred_optimal)
if self.cfg.scheduler_type == Scheduler_Type.EULER:
approximated_z_tp1 = self.scheduler.inv_step(noise_pred, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach()
else:
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep is not None
else self.scheduler.final_alpha_cumprod
)
approximated_z_tp1 = _backward_ddim(
x_tm1=z_t,
alpha_t=alpha_prod_t,
alpha_tm1=alpha_prod_t_prev,
eps_xt=noise_pred,
)
if self.cfg.gradient_averaging_type == Gradient_Averaging_Type.ON_END and nosie_pred_avg is not None:
nosie_pred_avg = self.noise_regularization(nosie_pred_avg, noise_pred_optimal)
if self.cfg.scheduler_type == Scheduler_Type.EULER:
approximated_z_tp1 = self.scheduler.inv_step(nosie_pred_avg, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach()
else:
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep is not None
else self.scheduler.final_alpha_cumprod
)
approximated_z_tp1 = _backward_ddim(
x_tm1=z_t,
alpha_t=alpha_prod_t,
alpha_tm1=alpha_prod_t_prev,
eps_xt=nosie_pred_avg,
)
if self.cfg.update_epsilon_type != Epsilon_Update_Type.NONE:
latent_model_input = torch.cat([approximated_z_tp1] * 2) if self.do_classifier_free_guidance else approximated_z_tp1
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
self.scheduler.step_and_update_noise(noise_pred, t, approximated_z_tp1, z_t, return_dict=False, update_epsilon_type=self.cfg.update_epsilon_type)
return approximated_z_tp1
def detach_before_opt(self, z_tp1, t, prompt_embeds, added_cond_kwargs):
z_tp1 = z_tp1.detach()
t = t.detach()
prompt_embeds = prompt_embeds.detach()
return z_tp1, t, prompt_embeds, added_cond_kwargs
def opt_z_tp1_single_step(
self,
z_tp1,
z_t,
t,
prompt_embeds,
added_cond_kwargs,
lr=0.001,
opt_loss_kl_lambda=10.0,
):
l1_loss = torch.nn.L1Loss(reduction='sum')
mse = torch.nn.MSELoss(reduction='sum')
extra_step_kwargs = {}
self.unet.requires_grad_(False)
z_tp1, t, prompt_embeds, added_cond_kwargs = self.detach_before_opt(z_tp1, t, prompt_embeds, added_cond_kwargs)
z_tp1 = torch.nn.Parameter(z_tp1, requires_grad=True)
optimizer = torch.optim.SGD([z_tp1], lr=lr, momentum=0.9)
optimizer.zero_grad()
self.unet.zero_grad()
latent_model_input = torch.cat([z_tp1] * 2) if self.do_classifier_free_guidance else z_tp1
latent_model_input = self.scheduler_inference.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# # compute the previous noisy sample x_t -> x_t-1
z_t_hat = self.scheduler_inference.step(noise_pred, t, z_tp1, **extra_step_kwargs, return_dict=False)[0]
direct_loss = 0.5 * mse(z_t_hat, z_t.detach()) + 0.5 * l1_loss(z_t_hat, z_t.detach())
kl_loss = torch.tensor([0]).to(z_t.device)
loss = 1.0 * direct_loss + opt_loss_kl_lambda * kl_loss
loss.backward()
optimizer.step()
print(f't: {t}\t total_loss: {format(loss.item(), ".3f")}\t\t direct_loss: {format(direct_loss.item(), ".3f")}\t\t kl_loss: {format(kl_loss.item(), ".3f")}')
return z_tp1.detach()
def optimize_z_tp1(
self,
z_tp1,
z_t,
t,
prompt_embeds,
added_cond_kwargs,
nom_opt_iters=1,
lr=0.001,
opt_loss_kl_lambda=10.0,
):
l1_loss = torch.nn.L1Loss(reduction='sum')
mse = torch.nn.MSELoss(reduction='sum')
extra_step_kwargs = {}
self.unet.requires_grad_(False)
z_tp1, t, prompt_embeds, added_cond_kwargs = self.detach_before_opt(z_tp1, t, prompt_embeds, added_cond_kwargs)
z_tp1 = torch.nn.Parameter(z_tp1, requires_grad=True)
optimizer = torch.optim.SGD([z_tp1], lr=lr, momentum=0.9)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor = 0.5, verbose=True, patience=5, cooldown=3)
max_loss = 99999999999999
z_tp1_forward = self.scheduler.add_noise(self.z_0, self.noise, t.view((1))).detach()
z_tp1_best = None
for i in range(nom_opt_iters):
optimizer.zero_grad()
self.unet.zero_grad()
latent_model_input = torch.cat([z_tp1] * 2) if self.do_classifier_free_guidance else z_tp1
latent_model_input = self.scheduler_inference.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# # compute the previous noisy sample x_t -> x_t-1
z_t_hat = self.scheduler_inference.step(noise_pred, t, z_tp1, **extra_step_kwargs, return_dict=False)[0]
direct_loss = 0.5 * mse(z_t_hat, z_t.detach()) + 0.5 * l1_loss(z_t_hat, z_t.detach())
kl_loss = self.patchify_latents_kl_divergence(z_tp1, z_tp1_forward)
loss = 1.0 * direct_loss + opt_loss_kl_lambda * kl_loss
loss.backward()
best = False
if loss < max_loss:
max_loss = loss
z_tp1_best = torch.clone(z_tp1)
best = True
lr_scheduler.step(loss)
if optimizer.param_groups[0]['lr'] < 9e-06:
break
optimizer.step()
print(f't: {t}\t\t iter: {i}\t total_loss: {format(loss.item(), ".3f")}\t\t direct_loss: {format(direct_loss.item(), ".3f")}\t\t kl_loss: {format(kl_loss.item(), ".3f")}\t\t best: {best}')
if z_tp1_best is not None:
z_tp1 = z_tp1_best
self.prev_z4 = torch.clone(z_tp1)
return z_tp1.detach()
def opt_inv(self,
z_t,
t,
prompt_embeds,
added_cond_kwargs,
prev_timestep,
nom_opt_iters=1,
lr=0.001,
opt_none_inference_steps=False,
opt_loss_kl_lambda=10.0,
num_aprox_steps=100):
z_tp1 = self.inversion_step(z_t, t, prompt_embeds, added_cond_kwargs, num_aprox_steps=num_aprox_steps)
if t in self.scheduler_inference.timesteps:
z_tp1 = self.optimize_z_tp1(z_tp1, z_t, t, prompt_embeds, added_cond_kwargs, nom_opt_iters=nom_opt_iters, lr=lr, opt_loss_kl_lambda=opt_loss_kl_lambda)
return z_tp1
def latent2image(self, latents):
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
# if needs_upcasting:
# self.vae.to(dtype=torch.float16)
return image
def patchify_latents_kl_divergence(self, x0, x1):
# devide x0 and x1 into patches (4x64x64) -> (4x4x4)
PATCH_SIZE = 4
NUM_CHANNELS = 4
def patchify_tensor(input_tensor):
patches = input_tensor.unfold(1, PATCH_SIZE, PATCH_SIZE).unfold(2, PATCH_SIZE, PATCH_SIZE).unfold(3, PATCH_SIZE, PATCH_SIZE)
patches = patches.contiguous().view(-1, NUM_CHANNELS, PATCH_SIZE, PATCH_SIZE)
return patches
x0 = patchify_tensor(x0)
x1 = patchify_tensor(x1)
kl = self.latents_kl_divergence(x0, x1).sum()
# for i in range(x0.shape[0]):
# kl += self.latents_kl_divergence(x0[i], x1[i])
return kl
def latents_kl_divergence(self, x0, x1):
EPSILON = 1e-6
#{\displaystyle D_{\text{KL}}\left({\mathcal {N}}_{0}\parallel {\mathcal {N}}_{1}\right)={\frac {1}{2}}\left(\operatorname {tr} \left(\Sigma _{1}^{-1}\Sigma _{0}\right)-k+\left(\mu _{1}-\mu _{0}\right)^{\mathsf {T}}\Sigma _{1}^{-1}\left(\mu _{1}-\mu _{0}\right)+\ln \left({\frac {\det \Sigma _{1}}{\det \Sigma _{0}}}\right)\right).}
x0 = x0.view(x0.shape[0], x0.shape[1], -1)
x1 = x1.view(x1.shape[0], x1.shape[1], -1)
mu0 = x0.mean(dim=-1)
mu1 = x1.mean(dim=-1)
var0 = x0.var(dim=-1)
var1 = x1.var(dim=-1)
kl = torch.log((var1 + EPSILON) / (var0 + EPSILON)) + (var0 + (mu0 - mu1)**2) / (var1 + EPSILON) - 1
kl = torch.abs(kl).sum(dim=-1)
# kl = torch.linalg.norm(mu0 - mu1) + torch.linalg.norm(var0 - var1)
# kl *= 1000
# sigma0 = torch.cov(x0)
# sigma1 = torch.cov(x1)
# inv_sigma1 = torch.inverse(sigma1.to(dtype=torch.float64)).to(dtype=x0.dtype)
# k = x0.shape[1]
# kl = 0.5 * (torch.trace(inv_sigma1 @ sigma0) - k + (mu1 - mu0).T @ inv_sigma1 @ (mu1 - mu0) + torch.log(torch.det(sigma1) / torch.det(sigma0)))
return kl
class SpecifyGradient(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
# dummy loss value
return torch.zeros([1], device=input_tensor.device, dtype=input_tensor.dtype)
@staticmethod
@custom_bwd
def backward(ctx, grad):
gt_grad, = ctx.saved_tensors
batch_size = len(gt_grad)
return gt_grad / batch_size, None
|