Spaces:
Sleeping
Sleeping
File size: 7,250 Bytes
8e7d8ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
from model.Schedule import Schedule
import random
from random import randrange
from time import time
# Lakshmi, R. et al. “A New Biological Operator in Genetic Algorithm for Class Scheduling Problem.”
# International Journal of Computer Applications 60 (2012): 6-11.
# Genetic algorithm
class GeneticAlgorithm:
def initAlgorithm(self, prototype, numberOfChromosomes=100, replaceByGeneration=8, trackBest=5):
# Number of best chromosomes currently saved in best chromosome group
self._currentBestSize = 0
# Prototype of chromosomes in population
self._prototype = prototype
# there should be at least 2 chromosomes in population
if numberOfChromosomes < 2:
numberOfChromosomes = 2
# and algorithm should track at least on of best chromosomes
if trackBest < 1:
trackBest = 1
# Population of chromosomes
self._chromosomes = numberOfChromosomes * [None]
# Inidicates whether chromosome belongs to best chromosome group
self._bestFlags = numberOfChromosomes * [False]
# Indices of best chromosomes
self._bestChromosomes = trackBest * [0]
# Number of chromosomes which are replaced in each generation by offspring
self.set_replace_by_generation(replaceByGeneration)
# Initializes genetic algorithm
def __init__(self, configuration, numberOfCrossoverPoints=2, mutationSize=2, crossoverProbability=80,
mutationProbability=3):
self.initAlgorithm(Schedule(configuration))
self._mutationSize = mutationSize
self._numberOfCrossoverPoints = numberOfCrossoverPoints
self._crossoverProbability = crossoverProbability
self._mutationProbability = mutationProbability
@property
# Returns pointer to best chromosomes in population
def result(self):
return self._chromosomes[self._bestChromosomes[0]]
def set_replace_by_generation(self, value):
numberOfChromosomes = len(self._chromosomes)
trackBest = len(self._bestChromosomes)
if (value > numberOfChromosomes - trackBest):
value = numberOfChromosomes - trackBest
self._replaceByGeneration = value
# Tries to add chromosomes in best chromosome group
def addToBest(self, chromosomeIndex):
bestChromosomes = self._bestChromosomes
length_best = len(bestChromosomes)
bestFlags = self._bestFlags
chromosomes = self._chromosomes
# don't add if new chromosome hasn't fitness big enough for best chromosome group
# or it is already in the group?
if (self._currentBestSize == length_best and chromosomes[bestChromosomes[self._currentBestSize - 1]].fitness >=
chromosomes[chromosomeIndex].fitness) or bestFlags[chromosomeIndex]:
return
# find place for new chromosome
j = self._currentBestSize
for i in range(j, -1, -1):
j = i
pos = bestChromosomes[i - 1]
# group is not full?
if i < length_best:
# position of new chromosomes is found?
if chromosomes[pos].fitness > chromosomes[chromosomeIndex].fitness:
break
# move chromosomes to make room for new
bestChromosomes[i] = pos
else:
# group is full remove worst chromosomes in the group
bestFlags[pos] = False
# store chromosome in best chromosome group
bestChromosomes[j] = chromosomeIndex
bestFlags[chromosomeIndex] = True
# increase current size if it has not reached the limit yet
if self._currentBestSize < length_best:
self._currentBestSize += 1
# Returns TRUE if chromosome belongs to best chromosome group
def isInBest(self, chromosomeIndex) -> bool:
return self._bestFlags[chromosomeIndex]
# Clears best chromosome group
def clearBest(self):
self._bestFlags = len(self._bestFlags) * [False]
self._currentBestSize = 0
# initialize new population with chromosomes randomly built using prototype
def initialize(self, population):
# addToBest = self.addToBest
prototype = self._prototype
length_chromosomes = len(population)
for i in range(0, length_chromosomes):
# add new chromosome to population
population[i] = prototype.makeNewFromPrototype()
# addToBest(i)
def selection(self, population):
length_chromosomes = len(population)
return (population[randrange(32768) % length_chromosomes], population[randrange(32768) % length_chromosomes])
def replacement(self, population, replaceByGeneration) -> []:
mutationSize = self._mutationSize
numberOfCrossoverPoints = self._numberOfCrossoverPoints
crossoverProbability = self._crossoverProbability
mutationProbability = self._mutationProbability
selection = self.selection
isInBest = self.isInBest
length_chromosomes = len(population)
# produce offspring
offspring = replaceByGeneration * [None]
for j in range(replaceByGeneration):
# selects parent randomly
parent = selection(population)
offspring[j] = parent[0].crossover(parent[1], numberOfCrossoverPoints, crossoverProbability)
offspring[j].mutation(mutationSize, mutationProbability)
# replace chromosomes of current operation with offspring
# select chromosome for replacement randomly
ci = randrange(32768) % length_chromosomes
while isInBest(ci):
ci = randrange(32768) % length_chromosomes
# replace chromosomes
population[ci] = offspring[j]
# try to add new chromosomes in best chromosome group
self.addToBest(ci)
return offspring
# Starts and executes algorithm
def run(self, maxRepeat=9999, minFitness=0.999):
# clear best chromosome group from previous execution
self.clearBest()
length_chromosomes = len(self._chromosomes)
self.initialize(self._chromosomes)
random.seed(round(time() * 1000))
# Current generation
currentGeneration = 0
repeat = 0
lastBestFit = 0.0
while 1:
best = self.result
print("Fitness:", "{:f}\t".format(best.fitness), "Generation:", currentGeneration, end="\r")
# algorithm has reached criteria?
if best.fitness > minFitness:
break
difference = abs(best.fitness - lastBestFit)
if difference <= 0.0000001:
repeat += 1
else:
repeat = 0
if repeat > (maxRepeat / 100):
random.seed(round(time() * 1000))
self.set_replace_by_generation(self._replaceByGeneration * 3)
self._crossoverProbability += 1
self.replacement(self._chromosomes, self._replaceByGeneration)
lastBestFit = best.fitness
currentGeneration += 1
def __str__(self):
return "Genetic Algorithm"
|