Spaces:
Sleeping
Sleeping
File size: 7,774 Bytes
8e7d8ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
from model.Schedule import Schedule
import numpy as np
import random
import sys
from time import time
# K.Deb, A.Pratap, S.Agrawal, T.Meyarivan, A fast and elitist multiobjective genetic algorithm:
# NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002) 182–197.
# NSGA II
class NsgaII:
def initAlgorithm(self, prototype, numberOfChromosomes=100):
# Prototype of chromosomes in population
self._prototype = prototype
# there should be at least 2 chromosomes in population
if numberOfChromosomes < 2:
numberOfChromosomes = 2
# Population of chromosomes
self._chromosomes = []
self._populationSize = numberOfChromosomes
self._repeatRatio = .0
# Initializes genetic algorithm
def __init__(self, configuration, numberOfCrossoverPoints=2, mutationSize=2, crossoverProbability=80,
mutationProbability=3):
self.initAlgorithm(Schedule(configuration))
self._mutationSize = mutationSize
self._numberOfCrossoverPoints = numberOfCrossoverPoints
self._crossoverProbability = crossoverProbability
self._mutationProbability = mutationProbability
@property
# Returns pointer to best chromosomes in population
def result(self):
return self._chromosomes[0]
# non-dominated sorting function
def nonDominatedSorting(self, totalChromosome):
doublePopulationSize = self._populationSize * 2
s = doublePopulationSize * [ set() ]
n = np.zeros(doublePopulationSize, dtype=int)
front = [ set() ]
for p in range(doublePopulationSize):
for q in range(doublePopulationSize):
if totalChromosome[p].fitness > totalChromosome[q].fitness:
s[p].add(q)
elif totalChromosome[p].fitness < totalChromosome[q].fitness:
n[p] += 1
if n[p] == 0:
front[0].add(p)
i = 0
while front[i]:
Q = set()
for p in front[i]:
for q in s[p]:
n[q] -= 1
if n[q] == 0:
Q.add(q)
i += 1
front.append(Q)
front.pop()
return front
# calculate crowding distance function
def calculateCrowdingDistance(self, front, totalChromosome):
distance, obj = {}, {}
for key in front:
distance[key] = 0
fitness = totalChromosome[key].fitness
if fitness not in obj.values():
obj[key] = fitness
sorted_keys = sorted(obj, key=obj.get)
size = len(obj)
distance[sorted_keys[0]] = distance[sorted_keys[-1]] = sys.float_info.max
if size > 1:
diff2 = totalChromosome[sorted_keys[-1]].getDifference(totalChromosome[sorted_keys[0]])
for i in range(1, size - 1):
diff = totalChromosome[sorted_keys[i + 1]].getDifference(totalChromosome[sorted_keys[i - 1]]) / diff2
distance[sorted_keys[i]] += diff
return distance
def selection(self, front, totalChromosome):
populationSize = self._populationSize
calculateCrowdingDistance = self.calculateCrowdingDistance
N = 0
newPop = []
while N < populationSize:
for row in front:
N += len(row)
if N > populationSize:
distance = calculateCrowdingDistance(row, totalChromosome)
sortedCdf = sorted(distance, key=distance.get, reverse=True)
for j in sortedCdf:
if len(newPop) >= populationSize:
break
newPop.append(j)
break
newPop.extend(row)
return [totalChromosome[n] for n in newPop]
def replacement(self, population):
populationSize = self._populationSize
numberOfCrossoverPoints = self._numberOfCrossoverPoints
crossoverProbability = self._crossoverProbability
offspring = []
# generate a random sequence to select the parent chromosome to crossover
S = np.arange(populationSize)
np.random.shuffle(S)
halfPopulationSize = populationSize // 2
for m in range(halfPopulationSize):
parent0 = population[S[2 * m]]
parent1 = population[S[2 * m + 1]]
child0 = parent0.crossover(parent1, numberOfCrossoverPoints, crossoverProbability)
child1 = parent1.crossover(parent0, numberOfCrossoverPoints, crossoverProbability)
# append child chromosome to offspring list
offspring.extend((child0, child1))
return offspring
# initialize new population with chromosomes randomly built using prototype
def initialize(self, population):
prototype = self._prototype
for i in range(len(population)):
# add new chromosome to population
population[i] = prototype.makeNewFromPrototype()
def reform(self):
random.seed(round(time() * 1000))
np.random.seed(int(time()))
if self._crossoverProbability < 95:
self._crossoverProbability += 1.0
elif self._mutationProbability < 30:
self._mutationProbability += 1.0
# Starts and executes algorithm
def run(self, maxRepeat=9999, minFitness=0.999):
mutationSize = self._mutationSize
mutationProbability = self._mutationProbability
nonDominatedSorting = self.nonDominatedSorting
selection = self.selection
populationSize = self._populationSize
population = populationSize * [None]
self.initialize(population)
random.seed(round(time() * 1000))
np.random.seed(int(time()))
# Current generation
currentGeneration = 0
repeat = 0
lastBestFit = 0.0
while 1:
if currentGeneration > 0:
best = self.result
print("Fitness:", "{:f}\t".format(best.fitness), "Generation:", currentGeneration, end="\r")
# algorithm has reached criteria?
if best.fitness > minFitness:
break
difference = abs(best.fitness - lastBestFit)
if difference <= 0.0000001:
repeat += 1
else:
repeat = 0
self._repeatRatio = repeat * 100 / maxRepeat
if repeat > (maxRepeat / 100):
self.reform()
# crossover
offspring = self.replacement(population)
# mutation
for child in offspring:
child.mutation(mutationSize, mutationProbability)
totalChromosome = population + offspring
# non-dominated sorting
front = nonDominatedSorting(totalChromosome)
if len(front) == 0:
break
# selection
population = selection(front, totalChromosome)
self._populationSize = populationSize = len(population)
# comparison
if currentGeneration == 0:
self._chromosomes = population
else:
totalChromosome = population + self._chromosomes
newBestFront = nonDominatedSorting(totalChromosome)
if len(newBestFront) == 0:
break
self._chromosomes = selection(newBestFront, totalChromosome)
lastBestFit = best.fitness
currentGeneration += 1
def __str__(self):
return "NSGA II"
|