File size: 7,774 Bytes
8e7d8ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from model.Schedule import Schedule
import numpy as np
import random
import sys
from time import time


# K.Deb, A.Pratap, S.Agrawal, T.Meyarivan, A fast and elitist multiobjective genetic algorithm: 
# NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002) 182–197.


# NSGA II
class NsgaII:
    def initAlgorithm(self, prototype, numberOfChromosomes=100):
        # Prototype of chromosomes in population
        self._prototype = prototype

        # there should be at least 2 chromosomes in population
        if numberOfChromosomes < 2:
            numberOfChromosomes = 2

        # Population of chromosomes
        self._chromosomes = []
        self._populationSize = numberOfChromosomes
        self._repeatRatio = .0

    # Initializes genetic algorithm
    def __init__(self, configuration, numberOfCrossoverPoints=2, mutationSize=2, crossoverProbability=80,
                 mutationProbability=3):
        self.initAlgorithm(Schedule(configuration))
        self._mutationSize = mutationSize
        self._numberOfCrossoverPoints = numberOfCrossoverPoints
        self._crossoverProbability = crossoverProbability
        self._mutationProbability = mutationProbability

    @property
    # Returns pointer to best chromosomes in population
    def result(self):
        return self._chromosomes[0]

    # non-dominated sorting function
    def nonDominatedSorting(self, totalChromosome):
        doublePopulationSize = self._populationSize * 2
        s = doublePopulationSize * [ set() ]
        n = np.zeros(doublePopulationSize, dtype=int)
        front = [ set() ]

        for p in range(doublePopulationSize):
            for q in range(doublePopulationSize):
                if totalChromosome[p].fitness > totalChromosome[q].fitness:
                    s[p].add(q)
                elif totalChromosome[p].fitness < totalChromosome[q].fitness:
                    n[p] += 1

            if n[p] == 0:
                front[0].add(p)
    
        i = 0
        while front[i]:
            Q = set()
            for p in front[i]:
                for q in s[p]:
                    n[q] -= 1
                    if n[q] == 0:
                        Q.add(q)
            i += 1
            front.append(Q)

        front.pop()
        return front

    # calculate crowding distance function
    def calculateCrowdingDistance(self, front, totalChromosome):
        distance, obj = {}, {}
        for key in front:
            distance[key] = 0
            fitness = totalChromosome[key].fitness
            if fitness not in obj.values():
                obj[key] = fitness

        sorted_keys = sorted(obj, key=obj.get)
        size = len(obj)
        distance[sorted_keys[0]] = distance[sorted_keys[-1]] = sys.float_info.max
        
        if size > 1:
            diff2 = totalChromosome[sorted_keys[-1]].getDifference(totalChromosome[sorted_keys[0]])
                
            for i in range(1, size - 1):
                diff = totalChromosome[sorted_keys[i + 1]].getDifference(totalChromosome[sorted_keys[i - 1]]) / diff2
                distance[sorted_keys[i]] += diff

        return distance

    def selection(self, front, totalChromosome):
        populationSize = self._populationSize
        calculateCrowdingDistance = self.calculateCrowdingDistance
        N = 0
        newPop = []
        while N < populationSize:
            for row in front:
                N += len(row)
                if N > populationSize:
                    distance = calculateCrowdingDistance(row, totalChromosome)
                    sortedCdf = sorted(distance, key=distance.get, reverse=True)
                    for j in sortedCdf:
                        if len(newPop) >= populationSize:
                            break
                        newPop.append(j)
                    break
                newPop.extend(row)
    
        return [totalChromosome[n] for n in newPop]

    def replacement(self, population):
        populationSize = self._populationSize
        numberOfCrossoverPoints = self._numberOfCrossoverPoints
        crossoverProbability = self._crossoverProbability
        offspring = []
        # generate a random sequence to select the parent chromosome to crossover
        S = np.arange(populationSize)
        np.random.shuffle(S)

        halfPopulationSize = populationSize // 2
        for m in range(halfPopulationSize):
            parent0 = population[S[2 * m]]
            parent1 = population[S[2 * m + 1]]
            child0 = parent0.crossover(parent1, numberOfCrossoverPoints, crossoverProbability)
            child1 = parent1.crossover(parent0, numberOfCrossoverPoints, crossoverProbability)

            # append child chromosome to offspring list
            offspring.extend((child0, child1))
            
        return offspring
                
    # initialize new population with chromosomes randomly built using prototype
    def initialize(self, population):
        prototype = self._prototype

        for i in range(len(population)):
            # add new chromosome to population
            population[i] = prototype.makeNewFromPrototype()

    def reform(self):
        random.seed(round(time() * 1000))
        np.random.seed(int(time()))
        if self._crossoverProbability < 95:
            self._crossoverProbability += 1.0
        elif self._mutationProbability < 30:
            self._mutationProbability += 1.0

    # Starts and executes algorithm
    def run(self, maxRepeat=9999, minFitness=0.999):
        mutationSize = self._mutationSize
        mutationProbability = self._mutationProbability
        nonDominatedSorting = self.nonDominatedSorting
        selection = self.selection
        populationSize = self._populationSize
        population = populationSize * [None]

        self.initialize(population)
        random.seed(round(time() * 1000))
        np.random.seed(int(time()))

        # Current generation
        currentGeneration = 0

        repeat = 0
        lastBestFit = 0.0

        while 1:
            if currentGeneration > 0:
                best = self.result
                print("Fitness:", "{:f}\t".format(best.fitness), "Generation:", currentGeneration, end="\r")

                # algorithm has reached criteria?
                if best.fitness > minFitness:
                    break

                difference = abs(best.fitness - lastBestFit)
                if difference <= 0.0000001:
                    repeat += 1
                else:
                    repeat = 0

                self._repeatRatio = repeat * 100 / maxRepeat
                if repeat > (maxRepeat / 100):
                    self.reform()

            # crossover
            offspring = self.replacement(population)

            # mutation
            for child in offspring:
                child.mutation(mutationSize, mutationProbability)

            totalChromosome = population + offspring

            # non-dominated sorting
            front = nonDominatedSorting(totalChromosome)
            if len(front) == 0:
                break

            # selection
            population = selection(front, totalChromosome)
            self._populationSize = populationSize = len(population)

            # comparison
            if currentGeneration == 0:
                self._chromosomes = population
            else:
                totalChromosome = population + self._chromosomes
                newBestFront = nonDominatedSorting(totalChromosome)
                if len(newBestFront) == 0:
                    break
                self._chromosomes = selection(newBestFront, totalChromosome)
                lastBestFit = best.fitness

            currentGeneration += 1
            
    def __str__(self):
        return "NSGA II"