File size: 15,382 Bytes
8e7d8ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from .Constant import Constant
from .CourseClass import CourseClass
from .Reservation import Reservation
from .Criteria import Criteria
from collections import deque
from random import randrange

import numpy as np

# Schedule chromosome
class Schedule:
    # Initializes chromosomes with configuration block (setup of chromosome)
    def __init__(self, configuration):
        self._configuration = configuration
        # Fitness value of chromosome
        self._fitness = 0

        # Time-space slots, one entry represent one hour in one classroom
        slots_length = Constant.DAYS_NUM * Constant.DAY_HOURS * self._configuration.numberOfRooms
        self._slots = [[] for _ in range(slots_length)]

        # Class table for chromosome
        # Used to determine first time-space slot used by class
        self._classes = {}

        # Flags of class requirements satisfaction
        self._criteria = np.zeros(self._configuration.numberOfCourseClasses * len(Criteria.weights), dtype=bool)

        self._diversity = 0.0
        self._rank = 0

        self._convertedObjectives = []
        self._objectives = []

    def copy(self, c, setup_only):
        if not setup_only:
            self._configuration = c.configuration
            # copy code
            self._slots, self._classes = [row[:] for row in c.slots], {key: value for key, value in c.classes.items()}

            # copy flags of class requirements
            self._criteria = c.criteria[:]

            # copy fitness
            self._fitness = c.fitness
            return self

        return Schedule(c.configuration)

    # Makes new chromosome with same setup but with randomly chosen code
    def makeNewFromPrototype(self, positions = None):
        # make new chromosome, copy chromosome setup
        new_chromosome = self.copy(self, True)
        new_chromosome_slots, new_chromosome_classes = new_chromosome._slots, new_chromosome._classes

        # place classes at random position
        classes = self._configuration.courseClasses
        nr = self._configuration.numberOfRooms
        DAYS_NUM, DAY_HOURS = Constant.DAYS_NUM, Constant.DAY_HOURS
        for c in classes:
            # determine random position of class
            dur = c.Duration

            day = randrange(DAYS_NUM)
            room = randrange(nr)
            time = randrange(DAY_HOURS - dur)
            reservation = Reservation.getReservation(nr, day, time, room)

            if positions is not None:
                positions.append(day)
                positions.append(room)
                positions.append(time)
            reservation_index = hash(reservation)

            # fill time-space slots, for each hour of class
            for i in range(dur - 1, -1, -1):
                new_chromosome_slots[reservation_index + i].append(c)

            # insert in class table of chromosome
            new_chromosome_classes[c] = reservation_index

        new_chromosome.calculateFitness()
        return new_chromosome

    # Performs crossover operation using to chromosomes and returns pointer to offspring
    def crossover(self, parent, numberOfCrossoverPoints, crossoverProbability):
        # check probability of crossover operation
        if randrange(100) > crossoverProbability:
            # no crossover, just copy first parent
            return self.copy(self, False)

        # new chromosome object, copy chromosome setup
        n = self.copy(self, True)
        n_classes, n_slots = n._classes, n._slots

        classes = self._classes
        course_classes = tuple(classes.keys())
        parent_classes = parent.classes
        parent_course_classes = tuple(parent.classes.keys())

        # number of classes
        size = len(classes)

        cp = size * [False]

        # determine crossover point (randomly)
        for i in range(numberOfCrossoverPoints, 0, -1):
            check_point = False
            while not check_point:
                p = randrange(size)
                if not cp[p]:
                    cp[p] = check_point = True

        # make new code by combining parent codes
        first = randrange(2) == 0
        
        for i in range(size):
            if first:
                course_class = course_classes[i]
                dur = course_class.Duration
                reservation_index = classes[course_class]
                # insert class from first parent into new chromosome's class table
                n_classes[course_class] = reservation_index
                # all time-space slots of class are copied
                for j in range(dur - 1, -1, -1):
                    n_slots[reservation_index + j].append(course_class)
            else:
                course_class = parent_course_classes[i]
                dur = course_class.Duration
                reservation_index = parent_classes[course_class]
                # insert class from second parent into new chromosome's class table
                n_classes[course_class] = reservation_index
                # all time-space slots of class are copied
                for j in range(dur - 1, -1, -1):
                    n_slots[reservation_index + j].append(course_class)

            # crossover point
            if cp[i]:
                # change source chromosome
                first = not first

        n.calculateFitness()

        # return smart pointer to offspring
        return n
        
    # Performs crossover operation using to chromosomes and returns pointer to offspring
    def crossovers(self, parent, r1, r2, r3, etaCross, crossoverProbability):
        # number of classes
        size = len(self._classes)
        jrand = randrange(size)
        
        nr = self._configuration.numberOfRooms
        DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM

        # make new chromosome, copy chromosome setup
        new_chromosome = self.copy(self, True)
        new_chromosome_slots, new_chromosome_classes = new_chromosome._slots, new_chromosome._classes
        classes = self._classes
        course_classes = tuple(classes.keys())
        parent_classes = parent.classes
        parent_course_classes = tuple(parent.classes.keys())
        for i in range(size):
            if randrange(100) > crossoverProbability or i == jrand:
                course_class = course_classes[i]
                reservation1, reservation2 = Reservation.parse(r1.classes[course_class]), Reservation.parse(r2.classes[course_class])
                reservation3 = Reservation.parse(r3.classes[course_class])
                
                dur = course_class.Duration
                day = int(reservation3.Day + etaCross * (reservation1.Day - reservation2.Day))
                if day < 0:
                    day = 0
                elif day >= DAYS_NUM:
                    day = DAYS_NUM - 1

                room = int(reservation3.Room + etaCross * (reservation1.Room - reservation2.Room))
                if room < 0:
                    room = 0
                elif room >= nr:
                    room = nr - 1

                time = int(reservation3.Time + etaCross * (reservation1.Time - reservation2.Time))
                if time < 0:
                    time = 0
                elif time >= (DAY_HOURS - dur):
                    time = DAY_HOURS - 1 - dur

                reservation = Reservation.getReservation(nr, day, time, room)
                reservation_index = hash(reservation)

                # fill time-space slots, for each hour of class
                for j in range(dur - 1, -1, -1):
                    new_chromosome_slots[reservation_index + j].append(course_class)

                # insert in class table of chromosome
                new_chromosome_classes[course_class] = reservation_index
            else:
                course_class = parent_course_classes[i]
                dur = course_class.Duration
                reservation = parent_classes[course_class]
                reservation_index = hash(reservation)
                
                # all time-space slots of class are copied
                for j in range(dur - 1, -1, -1):
                    new_chromosome_slots[reservation_index + j].append(course_class)
                
                # insert class from second parent into new chromosome's class table
                new_chromosome_classes[course_class] = reservation_index

        new_chromosome.calculateFitness()

        # return smart pointer to offspring
        return new_chromosome

    def repair(self, cc1: CourseClass, reservation1_index: int, reservation2: Reservation):
        nr = self._configuration.numberOfRooms
        DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM
        slots = self._slots
        dur = cc1.Duration

        for j in range(dur):
            # remove class hour from current time-space slot
            cl = slots[reservation1_index + j]
            while cc1 in cl:
                cl.remove(cc1)

        # determine position of class randomly
        if reservation2 is None:
            day = randrange(DAYS_NUM)
            room = randrange(nr)
            time = randrange(DAY_HOURS - dur)
            reservation2 = Reservation.getReservation(nr, day, time, room)

        reservation2_index = hash(reservation2)
        for j in range(dur):
            # move class hour to new time-space slot
            slots[reservation2_index + j].append(cc1)

        # change entry of class table to point to new time-space slots
        self._classes[cc1] = reservation2_index

    # Performs mutation on chromosome
    def mutation(self, mutationSize, mutationProbability):
        # check probability of mutation operation
        if randrange(100) > mutationProbability:
            return

        classes = self._classes
        # number of classes
        numberOfClasses = len(classes)
        course_classes = tuple(classes.keys())
        configuration = self._configuration
        nr = configuration.numberOfRooms

        # move selected number of classes at random position
        for i in range(mutationSize, 0, -1):
            # select ranom chromosome for movement
            mpos = randrange(numberOfClasses)

            # current time-space slot used by class
            cc1 = course_classes[mpos]
            reservation1_index = classes[cc1]

            self.repair(cc1, reservation1_index, None)

        self.calculateFitness()

    # Calculates fitness value of chromosome
    def calculateFitness(self):
        
        # increment value when criteria violation occurs
        self._objectives = np.zeros(len(Criteria.weights))

        # chromosome's score
        score = 0

        criteria, configuration = self._criteria, self._configuration
        items, slots = self._classes.items(), self._slots
        numberOfRooms = configuration.numberOfRooms
        DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM
        daySize = DAY_HOURS * numberOfRooms

        ci = 0
        getRoomById = configuration.getRoomById

        # check criteria and calculate scores for each class in schedule
        for cc, reservation_index in items:
            reservation = Reservation.parse(reservation_index)

            # coordinate of time-space slot
            day, time, room = reservation.Day, reservation.Time, reservation.Room

            dur = cc.Duration

            ro = Criteria.isRoomOverlapped(slots, reservation, dur)

            # on room overlapping
            criteria[ci + 0] = not ro

            r = getRoomById(room)

            # does current room have enough seats
            criteria[ci + 1] = Criteria.isSeatEnough(r, cc)

            # does current room have computers if they are required
            criteria[ci + 2] = Criteria.isComputerEnough(r, cc)

            # check overlapping of classes for professors
            timeId = day * daySize + time
            po, go = Criteria.isOverlappedProfStudentGrp(slots, cc, numberOfRooms, timeId)

            # professors have no overlapping classes?
            criteria[ci + 3] = not po

            # student groups has no overlapping classes?
            criteria[ci + 4] = not go

            for i in range(len(self._objectives)):
                if criteria[ci + i]:
                    score += 1
                else:
                    score += Criteria.weights[i]
                    self._objectives[i] += 1 if Criteria.weights[i] > 0 else 2

            ci += len(Criteria.weights)

        # calculate fitness value based on score
        self._fitness = score / len(criteria)

    def getDifference(self, other):
        return (self._criteria ^ other.criteria).sum()


    def extractPositions(self, positions):
        i = 0
        items = self._classes.items()
        for cc, reservation_index in items:
            reservation = Reservation.parse(reservation_index)

            positions[i] = reservation.Day
            i += 1
            positions[i] = reservation.Room
            i += 1
            positions[i] = reservation.Time
            i += 1


    def updatePositions(self, positions):
        DAYS_NUM, DAY_HOURS = Constant.DAYS_NUM, Constant.DAY_HOURS
        nr = self._configuration.numberOfRooms
        i = 0
        items = self._classes.items()
        for cc, reservation1_index in items:
            dur = cc.Duration
            day = abs(int(positions[i]) % DAYS_NUM)
            room = abs(int(positions[i + 1]) % nr)
            time = abs(int(positions[i + 2]) % (DAY_HOURS - dur))

            reservation2 = Reservation.getReservation(nr, day, time, room)
            self.repair(cc, reservation1_index, reservation2)

            positions[i] = reservation2.Day
            i += 1
            
            positions[i] = reservation2.Room
            i += 1
            
            positions[i] = reservation2.Time
            i += 1
            

        self.calculateFitness()


    # Returns fitness value of chromosome
    @property
    def fitness(self):
        return self._fitness

    @property
    def configuration(self):
        return self._configuration

    @property
    # Returns reference to table of classes
    def classes(self):
        return self._classes

    @property
    # Returns array of flags of class requirements satisfaction
    def criteria(self):
        return self._criteria

    @property
    # Return reference to array of time-space slots
    def slots(self):
        return self._slots

    @property
    def diversity(self):
        return self._diversity

    @diversity.setter
    def diversity(self, new_diversity):
        self._diversity = new_diversity
        
    @property
    def rank(self):
        return self._rank

    @rank.setter
    def rank(self, new_rank):
        self._rank = new_rank

    @property
    def convertedObjectives(self):
        return self._convertedObjectives

    @property
    def objectives(self):
        return self._objectives

    def resizeConvertedObjectives(self, numObj):
        self._convertedObjectives = numObj * [0]

    def clone(self):
        return self.copy(self, False)

    def dominates(self, other):
        better = False
        for f, obj in enumerate(self.objectives):
            if obj > other.objectives[f]:
                return False

            if obj < other.objectives[f]:
                better = True

        return better