Spaces:
Sleeping
Sleeping
File size: 15,382 Bytes
8e7d8ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
from .Constant import Constant
from .CourseClass import CourseClass
from .Reservation import Reservation
from .Criteria import Criteria
from collections import deque
from random import randrange
import numpy as np
# Schedule chromosome
class Schedule:
# Initializes chromosomes with configuration block (setup of chromosome)
def __init__(self, configuration):
self._configuration = configuration
# Fitness value of chromosome
self._fitness = 0
# Time-space slots, one entry represent one hour in one classroom
slots_length = Constant.DAYS_NUM * Constant.DAY_HOURS * self._configuration.numberOfRooms
self._slots = [[] for _ in range(slots_length)]
# Class table for chromosome
# Used to determine first time-space slot used by class
self._classes = {}
# Flags of class requirements satisfaction
self._criteria = np.zeros(self._configuration.numberOfCourseClasses * len(Criteria.weights), dtype=bool)
self._diversity = 0.0
self._rank = 0
self._convertedObjectives = []
self._objectives = []
def copy(self, c, setup_only):
if not setup_only:
self._configuration = c.configuration
# copy code
self._slots, self._classes = [row[:] for row in c.slots], {key: value for key, value in c.classes.items()}
# copy flags of class requirements
self._criteria = c.criteria[:]
# copy fitness
self._fitness = c.fitness
return self
return Schedule(c.configuration)
# Makes new chromosome with same setup but with randomly chosen code
def makeNewFromPrototype(self, positions = None):
# make new chromosome, copy chromosome setup
new_chromosome = self.copy(self, True)
new_chromosome_slots, new_chromosome_classes = new_chromosome._slots, new_chromosome._classes
# place classes at random position
classes = self._configuration.courseClasses
nr = self._configuration.numberOfRooms
DAYS_NUM, DAY_HOURS = Constant.DAYS_NUM, Constant.DAY_HOURS
for c in classes:
# determine random position of class
dur = c.Duration
day = randrange(DAYS_NUM)
room = randrange(nr)
time = randrange(DAY_HOURS - dur)
reservation = Reservation.getReservation(nr, day, time, room)
if positions is not None:
positions.append(day)
positions.append(room)
positions.append(time)
reservation_index = hash(reservation)
# fill time-space slots, for each hour of class
for i in range(dur - 1, -1, -1):
new_chromosome_slots[reservation_index + i].append(c)
# insert in class table of chromosome
new_chromosome_classes[c] = reservation_index
new_chromosome.calculateFitness()
return new_chromosome
# Performs crossover operation using to chromosomes and returns pointer to offspring
def crossover(self, parent, numberOfCrossoverPoints, crossoverProbability):
# check probability of crossover operation
if randrange(100) > crossoverProbability:
# no crossover, just copy first parent
return self.copy(self, False)
# new chromosome object, copy chromosome setup
n = self.copy(self, True)
n_classes, n_slots = n._classes, n._slots
classes = self._classes
course_classes = tuple(classes.keys())
parent_classes = parent.classes
parent_course_classes = tuple(parent.classes.keys())
# number of classes
size = len(classes)
cp = size * [False]
# determine crossover point (randomly)
for i in range(numberOfCrossoverPoints, 0, -1):
check_point = False
while not check_point:
p = randrange(size)
if not cp[p]:
cp[p] = check_point = True
# make new code by combining parent codes
first = randrange(2) == 0
for i in range(size):
if first:
course_class = course_classes[i]
dur = course_class.Duration
reservation_index = classes[course_class]
# insert class from first parent into new chromosome's class table
n_classes[course_class] = reservation_index
# all time-space slots of class are copied
for j in range(dur - 1, -1, -1):
n_slots[reservation_index + j].append(course_class)
else:
course_class = parent_course_classes[i]
dur = course_class.Duration
reservation_index = parent_classes[course_class]
# insert class from second parent into new chromosome's class table
n_classes[course_class] = reservation_index
# all time-space slots of class are copied
for j in range(dur - 1, -1, -1):
n_slots[reservation_index + j].append(course_class)
# crossover point
if cp[i]:
# change source chromosome
first = not first
n.calculateFitness()
# return smart pointer to offspring
return n
# Performs crossover operation using to chromosomes and returns pointer to offspring
def crossovers(self, parent, r1, r2, r3, etaCross, crossoverProbability):
# number of classes
size = len(self._classes)
jrand = randrange(size)
nr = self._configuration.numberOfRooms
DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM
# make new chromosome, copy chromosome setup
new_chromosome = self.copy(self, True)
new_chromosome_slots, new_chromosome_classes = new_chromosome._slots, new_chromosome._classes
classes = self._classes
course_classes = tuple(classes.keys())
parent_classes = parent.classes
parent_course_classes = tuple(parent.classes.keys())
for i in range(size):
if randrange(100) > crossoverProbability or i == jrand:
course_class = course_classes[i]
reservation1, reservation2 = Reservation.parse(r1.classes[course_class]), Reservation.parse(r2.classes[course_class])
reservation3 = Reservation.parse(r3.classes[course_class])
dur = course_class.Duration
day = int(reservation3.Day + etaCross * (reservation1.Day - reservation2.Day))
if day < 0:
day = 0
elif day >= DAYS_NUM:
day = DAYS_NUM - 1
room = int(reservation3.Room + etaCross * (reservation1.Room - reservation2.Room))
if room < 0:
room = 0
elif room >= nr:
room = nr - 1
time = int(reservation3.Time + etaCross * (reservation1.Time - reservation2.Time))
if time < 0:
time = 0
elif time >= (DAY_HOURS - dur):
time = DAY_HOURS - 1 - dur
reservation = Reservation.getReservation(nr, day, time, room)
reservation_index = hash(reservation)
# fill time-space slots, for each hour of class
for j in range(dur - 1, -1, -1):
new_chromosome_slots[reservation_index + j].append(course_class)
# insert in class table of chromosome
new_chromosome_classes[course_class] = reservation_index
else:
course_class = parent_course_classes[i]
dur = course_class.Duration
reservation = parent_classes[course_class]
reservation_index = hash(reservation)
# all time-space slots of class are copied
for j in range(dur - 1, -1, -1):
new_chromosome_slots[reservation_index + j].append(course_class)
# insert class from second parent into new chromosome's class table
new_chromosome_classes[course_class] = reservation_index
new_chromosome.calculateFitness()
# return smart pointer to offspring
return new_chromosome
def repair(self, cc1: CourseClass, reservation1_index: int, reservation2: Reservation):
nr = self._configuration.numberOfRooms
DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM
slots = self._slots
dur = cc1.Duration
for j in range(dur):
# remove class hour from current time-space slot
cl = slots[reservation1_index + j]
while cc1 in cl:
cl.remove(cc1)
# determine position of class randomly
if reservation2 is None:
day = randrange(DAYS_NUM)
room = randrange(nr)
time = randrange(DAY_HOURS - dur)
reservation2 = Reservation.getReservation(nr, day, time, room)
reservation2_index = hash(reservation2)
for j in range(dur):
# move class hour to new time-space slot
slots[reservation2_index + j].append(cc1)
# change entry of class table to point to new time-space slots
self._classes[cc1] = reservation2_index
# Performs mutation on chromosome
def mutation(self, mutationSize, mutationProbability):
# check probability of mutation operation
if randrange(100) > mutationProbability:
return
classes = self._classes
# number of classes
numberOfClasses = len(classes)
course_classes = tuple(classes.keys())
configuration = self._configuration
nr = configuration.numberOfRooms
# move selected number of classes at random position
for i in range(mutationSize, 0, -1):
# select ranom chromosome for movement
mpos = randrange(numberOfClasses)
# current time-space slot used by class
cc1 = course_classes[mpos]
reservation1_index = classes[cc1]
self.repair(cc1, reservation1_index, None)
self.calculateFitness()
# Calculates fitness value of chromosome
def calculateFitness(self):
# increment value when criteria violation occurs
self._objectives = np.zeros(len(Criteria.weights))
# chromosome's score
score = 0
criteria, configuration = self._criteria, self._configuration
items, slots = self._classes.items(), self._slots
numberOfRooms = configuration.numberOfRooms
DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM
daySize = DAY_HOURS * numberOfRooms
ci = 0
getRoomById = configuration.getRoomById
# check criteria and calculate scores for each class in schedule
for cc, reservation_index in items:
reservation = Reservation.parse(reservation_index)
# coordinate of time-space slot
day, time, room = reservation.Day, reservation.Time, reservation.Room
dur = cc.Duration
ro = Criteria.isRoomOverlapped(slots, reservation, dur)
# on room overlapping
criteria[ci + 0] = not ro
r = getRoomById(room)
# does current room have enough seats
criteria[ci + 1] = Criteria.isSeatEnough(r, cc)
# does current room have computers if they are required
criteria[ci + 2] = Criteria.isComputerEnough(r, cc)
# check overlapping of classes for professors
timeId = day * daySize + time
po, go = Criteria.isOverlappedProfStudentGrp(slots, cc, numberOfRooms, timeId)
# professors have no overlapping classes?
criteria[ci + 3] = not po
# student groups has no overlapping classes?
criteria[ci + 4] = not go
for i in range(len(self._objectives)):
if criteria[ci + i]:
score += 1
else:
score += Criteria.weights[i]
self._objectives[i] += 1 if Criteria.weights[i] > 0 else 2
ci += len(Criteria.weights)
# calculate fitness value based on score
self._fitness = score / len(criteria)
def getDifference(self, other):
return (self._criteria ^ other.criteria).sum()
def extractPositions(self, positions):
i = 0
items = self._classes.items()
for cc, reservation_index in items:
reservation = Reservation.parse(reservation_index)
positions[i] = reservation.Day
i += 1
positions[i] = reservation.Room
i += 1
positions[i] = reservation.Time
i += 1
def updatePositions(self, positions):
DAYS_NUM, DAY_HOURS = Constant.DAYS_NUM, Constant.DAY_HOURS
nr = self._configuration.numberOfRooms
i = 0
items = self._classes.items()
for cc, reservation1_index in items:
dur = cc.Duration
day = abs(int(positions[i]) % DAYS_NUM)
room = abs(int(positions[i + 1]) % nr)
time = abs(int(positions[i + 2]) % (DAY_HOURS - dur))
reservation2 = Reservation.getReservation(nr, day, time, room)
self.repair(cc, reservation1_index, reservation2)
positions[i] = reservation2.Day
i += 1
positions[i] = reservation2.Room
i += 1
positions[i] = reservation2.Time
i += 1
self.calculateFitness()
# Returns fitness value of chromosome
@property
def fitness(self):
return self._fitness
@property
def configuration(self):
return self._configuration
@property
# Returns reference to table of classes
def classes(self):
return self._classes
@property
# Returns array of flags of class requirements satisfaction
def criteria(self):
return self._criteria
@property
# Return reference to array of time-space slots
def slots(self):
return self._slots
@property
def diversity(self):
return self._diversity
@diversity.setter
def diversity(self, new_diversity):
self._diversity = new_diversity
@property
def rank(self):
return self._rank
@rank.setter
def rank(self, new_rank):
self._rank = new_rank
@property
def convertedObjectives(self):
return self._convertedObjectives
@property
def objectives(self):
return self._objectives
def resizeConvertedObjectives(self, numObj):
self._convertedObjectives = numObj * [0]
def clone(self):
return self.copy(self, False)
def dominates(self, other):
better = False
for f, obj in enumerate(self.objectives):
if obj > other.objectives[f]:
return False
if obj < other.objectives[f]:
better = True
return better
|