Update app.py
Browse filesto make it more dynamic
app.py
CHANGED
@@ -1,158 +1,57 @@
|
|
1 |
from dotenv import load_dotenv
|
2 |
import os
|
3 |
-
from sentence_transformers import SentenceTransformer
|
4 |
import gradio as gr
|
5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
from groq import Groq
|
7 |
|
8 |
-
|
9 |
load_dotenv()
|
10 |
-
|
11 |
api = os.getenv("groq_api_key")
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
metadata_list = [student, employee, course]
|
53 |
-
|
54 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
55 |
-
|
56 |
-
embeddings = model.encode(metadata_list)
|
57 |
-
|
58 |
-
return embeddings,model,student,employee,course
|
59 |
-
|
60 |
-
def find_best_fit(embeddings,model,user_query,student,employee,course):
|
61 |
-
query_embedding = model.encode([user_query])
|
62 |
-
similarities = cosine_similarity(query_embedding, embeddings)
|
63 |
-
best_match_table = similarities.argmax()
|
64 |
-
if(best_match_table==0):
|
65 |
-
table_metadata=student
|
66 |
-
elif(best_match_table==1):
|
67 |
-
table_metadata=employee
|
68 |
-
else:
|
69 |
-
table_metadata=course
|
70 |
-
|
71 |
-
return table_metadata
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
def create_prompt(user_query,table_metadata):
|
76 |
-
system_prompt="""
|
77 |
-
You are a SQL query generator specialized in generating SQL queries for a single table at a time. Your task is to accurately convert natural language queries into SQL statements based on the user's intent and the provided table metadata.
|
78 |
-
|
79 |
-
Rules:
|
80 |
-
Single Table Only: Assume all queries are related to a single table provided in the metadata. Ignore any references to other tables.
|
81 |
-
Metadata-Based Validation: Always ensure the generated query matches the table name, columns, and data types provided in the metadata.
|
82 |
-
User Intent: Accurately capture the user's requirements, such as filters, sorting, or aggregations, as expressed in natural language.
|
83 |
-
SQL Syntax: Use standard SQL syntax that is compatible with most relational database systems.
|
84 |
-
|
85 |
-
Input Format:
|
86 |
-
User Query: The user's natural language request.
|
87 |
-
Table Metadata: The structure of the relevant table, including the table name, column names, and data types.
|
88 |
-
|
89 |
-
Output Format:
|
90 |
-
SQL Query: A valid SQL query formatted for readability.
|
91 |
-
Do not output anything else except the SQL query.Not even a single word extra.Ouput the whole query in a single line only.
|
92 |
-
You are ready to generate SQL queries based on the user input and table metadata.
|
93 |
-
"""
|
94 |
-
|
95 |
-
|
96 |
-
user_prompt=f"""
|
97 |
-
User Query: {user_query}
|
98 |
-
Table Metadata: {table_metadata}
|
99 |
-
"""
|
100 |
-
|
101 |
-
return system_prompt,user_prompt
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
def generate_output(system_prompt,user_prompt):
|
106 |
-
client = Groq(api_key=api,)
|
107 |
-
chat_completion = client.chat.completions.create(messages=[
|
108 |
-
{"role": "system", "content": system_prompt},
|
109 |
-
{"role": "user","content": user_prompt,}],model="llama3-70b-8192",)
|
110 |
-
res = chat_completion.choices[0].message.content
|
111 |
-
|
112 |
-
select=res[0:6].lower()
|
113 |
-
if(select=="select"):
|
114 |
-
output=res
|
115 |
-
else:
|
116 |
-
output="Can't perform the task at the moment."
|
117 |
-
|
118 |
-
return output
|
119 |
-
|
120 |
-
|
121 |
-
def response(user_query):
|
122 |
-
embeddings,model,student,employee,course=create_metadata_embeddings()
|
123 |
-
|
124 |
-
table_metadata=find_best_fit(embeddings,model,user_query,student,employee,course)
|
125 |
-
|
126 |
-
system_prompt,user_prompt=create_prompt(user_query,table_metadata)
|
127 |
-
|
128 |
-
output=generate_output(system_prompt,user_prompt)
|
129 |
-
|
130 |
-
return output
|
131 |
-
|
132 |
-
desc="""
|
133 |
-
|
134 |
-
There are three tables in the database:
|
135 |
-
|
136 |
-
|
137 |
-
Student Table:
|
138 |
-
The table contains the student's unique ID, first name, last name, date of birth, email address, phone number, major field of study, and year of enrollment.
|
139 |
-
|
140 |
-
|
141 |
-
Employee Table:
|
142 |
-
The table includes the employee's unique ID, first name, last name, email address, department, job position, salary, and date of joining.
|
143 |
-
|
144 |
-
|
145 |
-
Course Info Table:
|
146 |
-
The table holds information about the course's unique ID, name, course code, instructor ID, department offering the course, number of credits, and the semester in which the course is offered.
|
147 |
-
|
148 |
-
"""
|
149 |
|
150 |
demo = gr.Interface(
|
151 |
fn=response,
|
152 |
-
inputs=gr.
|
153 |
-
outputs=
|
154 |
-
title="SQL
|
155 |
-
description=
|
156 |
)
|
157 |
|
158 |
-
demo.launch(
|
|
|
1 |
from dotenv import load_dotenv
|
2 |
import os
|
|
|
3 |
import gradio as gr
|
|
|
4 |
from groq import Groq
|
5 |
|
|
|
6 |
load_dotenv()
|
|
|
7 |
api = os.getenv("groq_api_key")
|
8 |
|
9 |
+
def create_prompt(user_query, table_metadata):
|
10 |
+
system_prompt = """
|
11 |
+
You are a SQL query generator specialized in generating SQL queries for a single table at a time.
|
12 |
+
Your task is to accurately convert natural language queries into SQL statements based on the user's intent and the provided table metadata.
|
13 |
+
|
14 |
+
Rules:
|
15 |
+
- Single Table Only: Use only the table in the metadata.
|
16 |
+
- Metadata-Based Validation: Use only columns in the metadata.
|
17 |
+
- User Intent: Support filters, grouping, sorting, etc.
|
18 |
+
- SQL Syntax: Use standard SQL (DuckDB compatible).
|
19 |
+
- Output only valid SQL. No extra commentary.
|
20 |
+
|
21 |
+
Input:
|
22 |
+
User Query: {user_query}
|
23 |
+
Table Metadata: {table_metadata}
|
24 |
+
|
25 |
+
Output:
|
26 |
+
SQL Query (on a single line, nothing else).
|
27 |
+
"""
|
28 |
+
return system_prompt.strip(), f"User Query: {user_query}\nTable Metadata: {table_metadata}"
|
29 |
+
|
30 |
+
def generate_output(system_prompt, user_prompt):
|
31 |
+
client = Groq(api_key=api)
|
32 |
+
chat_completion = client.chat.completions.create(
|
33 |
+
messages=[
|
34 |
+
{"role": "system", "content": system_prompt},
|
35 |
+
{"role": "user", "content": user_prompt}
|
36 |
+
],
|
37 |
+
model="llama3-70b-8192"
|
38 |
+
)
|
39 |
+
response = chat_completion.choices[0].message.content.strip()
|
40 |
+
return response if response.lower().startswith("select") else "Can't perform the task at the moment."
|
41 |
+
|
42 |
+
# NEW: accepts user_query and dynamic table_metadata string
|
43 |
+
def response(payload):
|
44 |
+
user_query = payload.get("question", "")
|
45 |
+
table_metadata = payload.get("schema", "")
|
46 |
+
system_prompt, user_prompt = create_prompt(user_query, table_metadata)
|
47 |
+
return generate_output(system_prompt, user_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
demo = gr.Interface(
|
50 |
fn=response,
|
51 |
+
inputs=gr.JSON(label="Input JSON (question, schema)"),
|
52 |
+
outputs="text",
|
53 |
+
title="SQL Generator (Groq + LLaMA3)",
|
54 |
+
description="Input: question & table metadata. Output: SQL using dynamic schema."
|
55 |
)
|
56 |
|
57 |
+
demo.launch()
|