Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
|
3 |
+
load_dotenv()
|
4 |
+
|
5 |
+
api = os.getenv("groq_api_key")
|
6 |
+
|
7 |
+
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
import gradio as gr
|
10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
+
from groq import Groq
|
12 |
+
|
13 |
+
def create_metadata_embeddings():
|
14 |
+
student="""
|
15 |
+
Table: student
|
16 |
+
Columns:
|
17 |
+
- student_id: an integer representing the unique ID of a student.
|
18 |
+
- first_name: a string containing the first name of the student.
|
19 |
+
- last_name: a string containing the last name of the student.
|
20 |
+
- date_of_birth: a date representing the student's birthdate.
|
21 |
+
- email: a string for the student's email address.
|
22 |
+
- phone_number: a string for the student's contact number.
|
23 |
+
- major: a string representing the student's major field of study.
|
24 |
+
- year_of_enrollment: an integer for the year the student enrolled.
|
25 |
+
"""
|
26 |
+
|
27 |
+
employee="""
|
28 |
+
Table: employee
|
29 |
+
Columns:
|
30 |
+
- employee_id: an integer representing the unique ID of an employee.
|
31 |
+
- first_name: a string containing the first name of the employee.
|
32 |
+
- last_name: a string containing the last name of the employee.
|
33 |
+
- email: a string for the employee's email address.
|
34 |
+
- department: a string for the department the employee works in.
|
35 |
+
- position: a string representing the employee's job title.
|
36 |
+
- salary: a float representing the employee's salary.
|
37 |
+
- date_of_joining: a date for when the employee joined the college.
|
38 |
+
"""
|
39 |
+
|
40 |
+
course="""
|
41 |
+
Table: course_info
|
42 |
+
Columns:
|
43 |
+
- course_id: an integer representing the unique ID of the course.
|
44 |
+
- course_name: a string containing the course's name.
|
45 |
+
- course_code: a string for the course's unique code.
|
46 |
+
- instructor_id: an integer for the ID of the instructor teaching the course.
|
47 |
+
- department: a string for the department offering the course.
|
48 |
+
- credits: an integer representing the course credits.
|
49 |
+
- semester: a string for the semester when the course is offered.
|
50 |
+
"""
|
51 |
+
|
52 |
+
metadata_list = [student, employee, course]
|
53 |
+
|
54 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
55 |
+
|
56 |
+
embeddings = model.encode(metadata_list)
|
57 |
+
|
58 |
+
return embeddings,model,student,employee,course
|
59 |
+
|
60 |
+
def find_best_fit(embeddings,model,user_query,student,employee,course):
|
61 |
+
query_embedding = model.encode([user_query])
|
62 |
+
similarities = cosine_similarity(query_embedding, embeddings)
|
63 |
+
best_match_table = similarities.argmax()
|
64 |
+
if(best_match_table==0):
|
65 |
+
table_metadata=student
|
66 |
+
elif(best_match_table==1):
|
67 |
+
table_metadata=employee
|
68 |
+
else:
|
69 |
+
table_metadata=course
|
70 |
+
|
71 |
+
return table_metadata
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def create_prompt(user_query,table_metadata):
|
76 |
+
system_prompt="""
|
77 |
+
You are a SQL query generator specialized in generating SELECT queries for a single table at a time. Your task is to accurately convert natural language queries into SQL SELECT statements based on the user's intent and the provided table metadata.
|
78 |
+
Rules:
|
79 |
+
Focus on SELECT Queries: Only generate SELECT queries. Do not generate INSERT, UPDATE, DELETE, or multi-table JOINs.
|
80 |
+
Single Table Only: Assume all queries are related to a single table provided in the metadata. Ignore any references to other tables.
|
81 |
+
Metadata-Based Validation: Always ensure the generated query matches the table name, columns, and data types provided in the metadata.
|
82 |
+
User Intent: Accurately capture the user's requirements, such as filters, sorting, or aggregations, as expressed in natural language.
|
83 |
+
SQL Syntax: Use standard SQL syntax that is compatible with most relational database systems.
|
84 |
+
Input Format:
|
85 |
+
User Query: The user's natural language request.
|
86 |
+
Table Metadata: The structure of the relevant table, including the table name, column names, and data types.
|
87 |
+
Output Format:
|
88 |
+
SQL Query: A valid SELECT query formatted for readability.
|
89 |
+
Do not output anything else except the SQL query.Not even a single word extra.Ouput the whole query in a single line only.
|
90 |
+
You are ready to generate SQL queries based on the user input and table metadata.
|
91 |
+
"""
|
92 |
+
|
93 |
+
|
94 |
+
user_prompt=f"""
|
95 |
+
User Query: {user_query}
|
96 |
+
Table Metadata: {table_metadata}
|
97 |
+
"""
|
98 |
+
|
99 |
+
return system_prompt,user_prompt
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
def generate_output(system_prompt,user_prompt):
|
104 |
+
client = Groq(api_key=api,)
|
105 |
+
chat_completion = client.chat.completions.create(messages=[
|
106 |
+
{"role": "system", "content": system_prompt},
|
107 |
+
{"role": "user","content": user_prompt,}],model="llama3-70b-8192",)
|
108 |
+
res = chat_completion.choices[0].message.content
|
109 |
+
|
110 |
+
select=res[0:6].lower()
|
111 |
+
if(select=="select"):
|
112 |
+
output=res
|
113 |
+
else:
|
114 |
+
output="Can't perform the task at the moment."
|
115 |
+
|
116 |
+
return output
|
117 |
+
|
118 |
+
|
119 |
+
def response(user_query):
|
120 |
+
embeddings,model,student,employee,course=create_metadata_embeddings()
|
121 |
+
|
122 |
+
table_metadata=find_best_fit(embeddings,model,user_query,student,employee,course)
|
123 |
+
|
124 |
+
system_prompt,user_prompt=create_prompt(user_query,table_metadata)
|
125 |
+
|
126 |
+
output=generate_output(system_prompt,user_prompt)
|
127 |
+
|
128 |
+
return output
|
129 |
+
|
130 |
+
|
131 |
+
demo = gr.Interface(
|
132 |
+
fn=response,
|
133 |
+
inputs=gr.Textbox(label="Please provide the natural language query"),
|
134 |
+
outputs=gr.Textbox(label="SQL Query"),
|
135 |
+
title="SQL Query generator"
|
136 |
+
)
|
137 |
+
|
138 |
+
demo.launch(share="True")
|