Spaces:
Running
Running
File size: 4,735 Bytes
5144ac6 e51d2b2 336b334 5144ac6 5dc2718 e51d2b2 5dc2718 e51d2b2 5dc2718 336b334 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 336b334 5144ac6 e51d2b2 5dc2718 e51d2b2 5dc2718 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 336b334 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 f0af5b0 e51d2b2 336b334 e51d2b2 5144ac6 5dc2718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
import time
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from TTS.api import TTS # Coqui TTS library
import PyPDF2
# Initialize Models
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
gpt_model_name = "OpenAssistant/oasst-sft-6-llama-30b"
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)
# Parse PDF and create resume content
def parse_resume(pdf):
reader = PyPDF2.PdfReader(pdf)
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
return {"Resume Content": text}
# Process inputs
def process_inputs(resume, job_desc):
resume_embeddings = {
section: embedding_model.encode(content)
for section, content in parse_resume(resume).items()
}
job_desc_embedding = embedding_model.encode(job_desc)
return resume_embeddings, job_desc_embedding
# Generate a follow-up question using GPT
def generate_question_gpt(response, resume_embeddings, job_description):
prompt = f"""
You are a hiring manager conducting a professional job interview.
Job Description: {job_description}
Candidate's Resume Insights: {resume_embeddings}
Candidate's Last Response: {response}
Based on the job description and candidate's resume, generate a professional follow-up question.
"""
inputs = gpt_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
outputs = gpt_model.generate(**inputs, max_length=150, num_beams=3, early_stopping=True)
question = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
return question.strip()
# Generate TTS audio for a question
def generate_audio(question):
audio_path = "output.wav"
tts_model.tts_to_file(text=question, file_path=audio_path)
return audio_path
# Conduct a mock interview
class MockInterview:
def __init__(self):
self.resume_embeddings = None
self.job_desc_embedding = None
self.interview_active = False
self.current_question = None
def start_interview(self, resume, job_desc):
self.resume_embeddings, self.job_desc_embedding = process_inputs(resume, job_desc)
self.interview_active = True
self.current_question = "Tell me about yourself."
return self.current_question, generate_audio(self.current_question)
def next_interaction(self, user_audio):
if not self.interview_active:
return "Interview not started.", None
# Transcribe user's response
transcription = stt_model(user_audio)["text"]
if not transcription.strip():
return "No response detected. Please try again.", None
# Generate the next question using GPT
self.current_question = generate_question_gpt(transcription, self.resume_embeddings, self.job_desc_embedding)
return transcription, generate_audio(self.current_question)
def end_interview(self):
self.interview_active = False
return "Thank you for participating in the interview.", generate_audio("Thank you for participating in the interview. Goodbye!")
mock_interview = MockInterview()
# Gradio Interface
def start_interview(resume, job_desc):
return mock_interview.start_interview(resume, job_desc)
def next_interaction(user_audio):
return mock_interview.next_interaction(user_audio)
def end_interview():
return mock_interview.end_interview()
interface = gr.Blocks()
with interface:
gr.Markdown("### Mock Interview AI\nUpload your resume and job description, and engage in a realistic audio-based mock interview simulation.")
with gr.Row():
resume_input = gr.File(label="Upload Resume (PDF)")
job_desc_input = gr.Textbox(label="Paste Job Description")
audio_input = gr.Audio(type="filepath", label="Your Response")
question_audio_output = gr.Audio(label="Question Audio")
transcription_output = gr.Textbox(label="Transcription")
resume_input.change(start_interview, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_audio_output])
audio_input.change(next_interaction, inputs=[audio_input], outputs=[transcription_output, question_audio_output])
end_button = gr.Button("End Interview")
end_button.click(end_interview, outputs=[transcription_output, question_audio_output])
if __name__ == "__main__":
interface.launch()
|