Spaces:
Running
Running
File size: 4,792 Bytes
5144ac6 e51d2b2 13da39a 5144ac6 5dc2718 e51d2b2 5dc2718 e51d2b2 4faaac7 13da39a c5639ef 5dc2718 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 4faaac7 c5639ef 4faaac7 c5639ef 5144ac6 e51d2b2 5dc2718 e51d2b2 5dc2718 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 c5639ef 4faaac7 e51d2b2 5144ac6 e51d2b2 5144ac6 e51d2b2 8088ee4 5144ac6 8088ee4 5144ac6 8088ee4 5144ac6 e51d2b2 5144ac6 e51d2b2 5144ac6 8088ee4 e51d2b2 c5639ef 8088ee4 5144ac6 5dc2718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import gradio as gr
import time
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from TTS.api import TTS # Coqui TTS library
import PyPDF2
# Initialize Models
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
gpt_model_name = "google/flan-t5-base"
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
gpt_model = AutoModelForSeq2SeqLM.from_pretrained(gpt_model_name)
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
# Parse PDF and create resume content
def parse_resume(pdf):
reader = PyPDF2.PdfReader(pdf)
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
return {"Resume Content": text}
# Process inputs
def process_inputs(resume, job_desc):
resume_embeddings = {
section: embedding_model.encode(content)
for section, content in parse_resume(resume).items()
}
job_desc_embedding = embedding_model.encode(job_desc)
return resume_embeddings, job_desc_embedding
# Generate a follow-up question using Flan-T5
def generate_question(response, resume_embeddings, job_desc):
user_embedding = embedding_model.encode(response)
similarities = {
section: cosine_similarity([user_embedding], [embedding])[0][0]
for section, embedding in resume_embeddings.items()
}
most_relevant_section = max(similarities, key=similarities.get)
prompt = f"You are a hiring manager. Based on the candidate's experience in {most_relevant_section} and the job description, ask a follow-up question."
inputs = gpt_tokenizer(prompt, return_tensors="pt", truncation=True)
outputs = gpt_model.generate(**inputs, max_length=50, num_beams=3, early_stopping=True)
question = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
return question
# Generate TTS audio for a question
def generate_audio(question):
audio_path = "output.wav"
tts_model.tts_to_file(text=question, file_path=audio_path)
return audio_path
# Conduct a mock interview
class MockInterview:
def __init__(self):
self.resume_embeddings = None
self.job_desc_embedding = None
self.interview_active = False
self.current_question = None
def start_interview(self, resume, job_desc):
self.resume_embeddings, self.job_desc_embedding = process_inputs(resume, job_desc)
self.interview_active = True
self.current_question = "Tell me about yourself."
return self.current_question, generate_audio(self.current_question)
def next_interaction(self, user_audio):
if not self.interview_active:
return "Interview not started.", None
# Transcribe user's response
transcription = stt_model(user_audio)["text"]
if not transcription.strip():
return "No response detected. Please try again.", None
# Generate the next question
self.current_question = generate_question(transcription, self.resume_embeddings, self.job_desc_embedding)
return transcription, generate_audio(self.current_question)
def end_interview(self):
self.interview_active = False
return "Thank you for participating in the interview.", generate_audio("Thank you for participating in the interview. Goodbye!")
mock_interview = MockInterview()
def start_interview(resume, job_desc):
question, audio = mock_interview.start_interview(resume, job_desc)
return audio
def process_response(user_audio):
transcription, audio = mock_interview.next_interaction(user_audio)
return transcription, audio
def finalize_interview():
message, audio = mock_interview.end_interview()
return audio
interface = gr.Blocks()
with interface:
gr.Markdown("### Mock Interview AI\nUpload your resume and job description, and engage in a realistic audio-based mock interview simulation.")
resume_input = gr.File(label="Upload Resume (PDF)")
job_desc_input = gr.Textbox(label="Paste Job Description")
audio_input = gr.Audio(source="microphone", type="filepath", label="Your Response")
question_audio_output = gr.Audio(label="Question Audio")
transcription_output = gr.Textbox(label="Transcription")
resume_input.change(start_interview, inputs=[resume_input, job_desc_input], outputs=[question_audio_output])
audio_input.change(process_response, inputs=[audio_input], outputs=[transcription_output, question_audio_output])
question_audio_output.change(finalize_interview, outputs=[question_audio_output])
if __name__ == "__main__":
interface.launch()
|