File size: 4,792 Bytes
5144ac6
e51d2b2
13da39a
5144ac6
 
5dc2718
e51d2b2
5dc2718
e51d2b2
 
 
4faaac7
 
 
13da39a
c5639ef
5dc2718
5144ac6
 
 
 
 
e51d2b2
5144ac6
e51d2b2
 
5144ac6
e51d2b2
 
5144ac6
e51d2b2
 
5144ac6
4faaac7
 
c5639ef
 
 
 
 
 
4faaac7
 
 
 
c5639ef
5144ac6
e51d2b2
 
5dc2718
e51d2b2
5dc2718
5144ac6
e51d2b2
5144ac6
 
 
 
 
e51d2b2
5144ac6
e51d2b2
 
5144ac6
e51d2b2
 
5144ac6
e51d2b2
5144ac6
e51d2b2
 
 
 
5144ac6
 
e51d2b2
5144ac6
c5639ef
4faaac7
e51d2b2
5144ac6
 
 
e51d2b2
5144ac6
 
 
e51d2b2
8088ee4
 
5144ac6
8088ee4
 
 
5144ac6
8088ee4
 
 
5144ac6
 
e51d2b2
5144ac6
e51d2b2
5144ac6
8088ee4
 
 
e51d2b2
 
c5639ef
8088ee4
 
 
5144ac6
 
5dc2718
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import time
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from TTS.api import TTS  # Coqui TTS library
import PyPDF2

# Initialize Models
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")

gpt_model_name = "google/flan-t5-base"
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
gpt_model = AutoModelForSeq2SeqLM.from_pretrained(gpt_model_name)

tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)

# Parse PDF and create resume content
def parse_resume(pdf):
    reader = PyPDF2.PdfReader(pdf)
    text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
    return {"Resume Content": text}

# Process inputs
def process_inputs(resume, job_desc):
    resume_embeddings = {
        section: embedding_model.encode(content)
        for section, content in parse_resume(resume).items()
    }
    job_desc_embedding = embedding_model.encode(job_desc)
    return resume_embeddings, job_desc_embedding

# Generate a follow-up question using Flan-T5
def generate_question(response, resume_embeddings, job_desc):
    user_embedding = embedding_model.encode(response)
    similarities = {
        section: cosine_similarity([user_embedding], [embedding])[0][0]
        for section, embedding in resume_embeddings.items()
    }
    most_relevant_section = max(similarities, key=similarities.get)
    prompt = f"You are a hiring manager. Based on the candidate's experience in {most_relevant_section} and the job description, ask a follow-up question."
    inputs = gpt_tokenizer(prompt, return_tensors="pt", truncation=True)
    outputs = gpt_model.generate(**inputs, max_length=50, num_beams=3, early_stopping=True)
    question = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return question

# Generate TTS audio for a question
def generate_audio(question):
    audio_path = "output.wav"
    tts_model.tts_to_file(text=question, file_path=audio_path)
    return audio_path

# Conduct a mock interview
class MockInterview:
    def __init__(self):
        self.resume_embeddings = None
        self.job_desc_embedding = None
        self.interview_active = False
        self.current_question = None

    def start_interview(self, resume, job_desc):
        self.resume_embeddings, self.job_desc_embedding = process_inputs(resume, job_desc)
        self.interview_active = True
        self.current_question = "Tell me about yourself."
        return self.current_question, generate_audio(self.current_question)

    def next_interaction(self, user_audio):
        if not self.interview_active:
            return "Interview not started.", None

        # Transcribe user's response
        transcription = stt_model(user_audio)["text"]

        if not transcription.strip():
            return "No response detected. Please try again.", None

        # Generate the next question
        self.current_question = generate_question(transcription, self.resume_embeddings, self.job_desc_embedding)
        return transcription, generate_audio(self.current_question)

    def end_interview(self):
        self.interview_active = False
        return "Thank you for participating in the interview.", generate_audio("Thank you for participating in the interview. Goodbye!")

mock_interview = MockInterview()

def start_interview(resume, job_desc):
    question, audio = mock_interview.start_interview(resume, job_desc)
    return audio

def process_response(user_audio):
    transcription, audio = mock_interview.next_interaction(user_audio)
    return transcription, audio

def finalize_interview():
    message, audio = mock_interview.end_interview()
    return audio

interface = gr.Blocks()

with interface:
    gr.Markdown("### Mock Interview AI\nUpload your resume and job description, and engage in a realistic audio-based mock interview simulation.")

    resume_input = gr.File(label="Upload Resume (PDF)")
    job_desc_input = gr.Textbox(label="Paste Job Description")
    audio_input = gr.Audio(source="microphone", type="filepath", label="Your Response")
    question_audio_output = gr.Audio(label="Question Audio")
    transcription_output = gr.Textbox(label="Transcription")

    resume_input.change(start_interview, inputs=[resume_input, job_desc_input], outputs=[question_audio_output])
    audio_input.change(process_response, inputs=[audio_input], outputs=[transcription_output, question_audio_output])
    question_audio_output.change(finalize_interview, outputs=[question_audio_output])

if __name__ == "__main__":
    interface.launch()