garyd1's picture
Update app.py
336b334 verified
raw
history blame
4.74 kB
import gradio as gr
import time
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from TTS.api import TTS # Coqui TTS library
import PyPDF2
# Initialize Models
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
gpt_model_name = "OpenAssistant/oasst-sft-6-llama-30b"
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name)
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name)
# Parse PDF and create resume content
def parse_resume(pdf):
reader = PyPDF2.PdfReader(pdf)
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
return {"Resume Content": text}
# Process inputs
def process_inputs(resume, job_desc):
resume_embeddings = {
section: embedding_model.encode(content)
for section, content in parse_resume(resume).items()
}
job_desc_embedding = embedding_model.encode(job_desc)
return resume_embeddings, job_desc_embedding
# Generate a follow-up question using GPT
def generate_question_gpt(response, resume_embeddings, job_description):
prompt = f"""
You are a hiring manager conducting a professional job interview.
Job Description: {job_description}
Candidate's Resume Insights: {resume_embeddings}
Candidate's Last Response: {response}
Based on the job description and candidate's resume, generate a professional follow-up question.
"""
inputs = gpt_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
outputs = gpt_model.generate(**inputs, max_length=150, num_beams=3, early_stopping=True)
question = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
return question.strip()
# Generate TTS audio for a question
def generate_audio(question):
audio_path = "output.wav"
tts_model.tts_to_file(text=question, file_path=audio_path)
return audio_path
# Conduct a mock interview
class MockInterview:
def __init__(self):
self.resume_embeddings = None
self.job_desc_embedding = None
self.interview_active = False
self.current_question = None
def start_interview(self, resume, job_desc):
self.resume_embeddings, self.job_desc_embedding = process_inputs(resume, job_desc)
self.interview_active = True
self.current_question = "Tell me about yourself."
return self.current_question, generate_audio(self.current_question)
def next_interaction(self, user_audio):
if not self.interview_active:
return "Interview not started.", None
# Transcribe user's response
transcription = stt_model(user_audio)["text"]
if not transcription.strip():
return "No response detected. Please try again.", None
# Generate the next question using GPT
self.current_question = generate_question_gpt(transcription, self.resume_embeddings, self.job_desc_embedding)
return transcription, generate_audio(self.current_question)
def end_interview(self):
self.interview_active = False
return "Thank you for participating in the interview.", generate_audio("Thank you for participating in the interview. Goodbye!")
mock_interview = MockInterview()
# Gradio Interface
def start_interview(resume, job_desc):
return mock_interview.start_interview(resume, job_desc)
def next_interaction(user_audio):
return mock_interview.next_interaction(user_audio)
def end_interview():
return mock_interview.end_interview()
interface = gr.Blocks()
with interface:
gr.Markdown("### Mock Interview AI\nUpload your resume and job description, and engage in a realistic audio-based mock interview simulation.")
with gr.Row():
resume_input = gr.File(label="Upload Resume (PDF)")
job_desc_input = gr.Textbox(label="Paste Job Description")
audio_input = gr.Audio(type="filepath", label="Your Response")
question_audio_output = gr.Audio(label="Question Audio")
transcription_output = gr.Textbox(label="Transcription")
resume_input.change(start_interview, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_audio_output])
audio_input.change(next_interaction, inputs=[audio_input], outputs=[transcription_output, question_audio_output])
end_button = gr.Button("End Interview")
end_button.click(end_interview, outputs=[transcription_output, question_audio_output])
if __name__ == "__main__":
interface.launch()