File size: 4,630 Bytes
e0d64af
fa9b7c5
 
d08f679
e0d64af
 
 
 
 
d08f679
e0d64af
 
 
 
d08f679
9bcb3e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0d64af
d08f679
e0d64af
 
d08f679
e0d64af
 
 
 
 
 
 
 
 
d08f679
e0d64af
 
 
 
 
 
 
 
fa9b7c5
e0d64af
 
 
 
 
 
 
 
fa9b7c5
e0d64af
 
fa9b7c5
e0d64af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import streamlit as st
import pandas as pd
import openai
import torch
import matplotlib.pyplot as plt
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from dotenv import load_dotenv
import anthropic

# Load environment variables
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY")

# UI Styling
st.markdown(
    """
    <style>
    .stButton button {
        background-color: #1F6FEB;
        color: white;
        border-radius: 8px;
        border: none;
        padding: 10px 20px;
        font-weight: bold;
    }
    .stButton button:hover {
        background-color: #1A4FC5;
    }
    .stTextInput > div > input {
        border: 1px solid #30363D;
        background-color: #161B22;
        color: #C9D1D9;
        border-radius: 6px;
        padding: 10px;
    }
    .stFileUploader > div {
        border: 2px dashed #30363D;
        background-color: #161B22;
        color: #C9D1D9;
        border-radius: 6px;
        padding: 10px;
    }
    .response-box {
        background-color: #161B22;
        padding: 10px;
        border-radius: 6px;
        margin-bottom: 10px;
        color: #FFFFFF;
    }
    </style>
    """,
    unsafe_allow_html=True
)

st.title("Excel Q&A Chatbot πŸ“Š")

# Model Selection
model_choice = st.selectbox("Select LLM Model", ["OpenAI GPT-3.5", "Claude 3 Haiku", "Mistral-7B"])

# Load appropriate model based on selection
if model_choice == "Mistral-7B":
    model_name = "mistralai/Mistral-7B-Instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
    def ask_mistral(query):
        inputs = tokenizer(query, return_tensors="pt").to("cuda")
        output = model.generate(**inputs)
        return tokenizer.decode(output[0])

elif model_choice == "Claude 3 Haiku":
    client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
    def ask_claude(query):
        response = client.messages.create(
            model="claude-3-haiku",
            messages=[{"role": "user", "content": query}]
        )
        return response.content

else:
    client = openai.OpenAI()
    def ask_gpt(query):
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": query}]
        )
        return response.choices[0].message.content

# File Upload
uploaded_file = st.file_uploader("Upload an Excel file", type=["csv", "xlsx"])

if uploaded_file is not None:
    file_extension = uploaded_file.name.split(".")[-1].lower()
    df = pd.read_csv(uploaded_file) if file_extension == "csv" else pd.read_excel(uploaded_file)
    st.write("### Preview of Data:")
    st.write(df.head())
    
    # Extract metadata
    column_names = df.columns.tolist()
    data_types = df.dtypes.apply(lambda x: x.name).to_dict()
    missing_values = df.isnull().sum().to_dict()
    
    # Display metadata
    st.write("### Column Details:")
    st.write(pd.DataFrame({"Column": column_names, "Type": data_types.values(), "Missing Values": missing_values.values()}))
    
    # User Query
    query = st.text_input("Ask a question about this data:")
    
    if st.button("Submit Query"):
        if query:
            # Interpret the query using selected LLM
            if model_choice == "Mistral-7B":
                parsed_query = ask_mistral(f"Convert this question into a Pandas operation: {query}")
            elif model_choice == "Claude 3 Haiku":
                parsed_query = ask_claude(f"Convert this question into a Pandas operation: {query}")
            else:
                parsed_query = ask_gpt(f"Convert this question into a Pandas operation: {query}")
            
            # Execute the query
            try:
                result = eval(f"df.{parsed_query}")
                st.write("### Result:")
                st.write(result if isinstance(result, pd.DataFrame) else str(result))
                
                # If numerical data, show a visualization
                if isinstance(result, pd.Series) and result.dtype in ["int64", "float64"]:
                    fig, ax = plt.subplots()
                    result.plot(kind="bar", ax=ax)
                    st.pyplot(fig)
                
            except Exception as e:
                st.error(f"Error executing query: {str(e)}")
    
    # Memory for context retention
    if "query_history" not in st.session_state:
        st.session_state.query_history = []
    st.session_state.query_history.append(query)