Spaces:
Running
Running
File size: 5,396 Bytes
e0d64af fa9b7c5 d08f679 e0d64af 9175756 d08f679 e0d64af d08f679 9bcb3e9 e0d64af d08f679 e0d64af d08f679 e0d64af d08f679 e0d64af 100cf1c e0d64af 100cf1c fa9b7c5 e0d64af fa9b7c5 e0d64af fa9b7c5 e0d64af b336262 e0d64af 9175756 e0d64af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import streamlit as st
import pandas as pd
import openai
import torch
import matplotlib.pyplot as plt
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from dotenv import load_dotenv
import anthropic
import ast
# Load environment variables
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY")
# UI Styling
st.markdown(
"""
<style>
.stButton button {
background-color: #1F6FEB;
color: white;
border-radius: 8px;
border: none;
padding: 10px 20px;
font-weight: bold;
}
.stButton button:hover {
background-color: #1A4FC5;
}
.stTextInput > div > input {
border: 1px solid #30363D;
background-color: #161B22;
color: #C9D1D9;
border-radius: 6px;
padding: 10px;
}
.stFileUploader > div {
border: 2px dashed #30363D;
background-color: #161B22;
color: #C9D1D9;
border-radius: 6px;
padding: 10px;
}
.response-box {
background-color: #161B22;
padding: 10px;
border-radius: 6px;
margin-bottom: 10px;
color: #FFFFFF;
}
</style>
""",
unsafe_allow_html=True
)
st.title("Excel Q&A Chatbot π")
# Model Selection
model_choice = st.selectbox("Select LLM Model", ["OpenAI GPT-3.5", "Claude 3 Haiku", "Mistral-7B"])
# Load appropriate model based on selection
if model_choice == "Mistral-7B":
model_name = "mistralai/Mistral-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
def ask_mistral(query):
inputs = tokenizer(query, return_tensors="pt").to("cuda")
output = model.generate(**inputs)
return tokenizer.decode(output[0])
elif model_choice == "Claude 3 Haiku":
client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
def ask_claude(query):
response = client.messages.create(
model="claude-3-haiku",
max_tokens=512,
messages=[{"role": "user", "content": query}]
)
return response.content[0]["text"]
else:
client = openai.OpenAI()
def ask_gpt(query):
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": query}]
)
return response.choices[0].message.content
# File Upload
uploaded_file = st.file_uploader("Upload an Excel file", type=["csv", "xlsx"])
if uploaded_file is not None:
file_extension = uploaded_file.name.split(".")[-1].lower()
df = pd.read_csv(uploaded_file) if file_extension == "csv" else pd.read_excel(uploaded_file, engine="openpyxl")
st.write("### Preview of Data:")
st.write(df.head())
# Extract metadata
column_names = df.columns.tolist()
data_types = df.dtypes.apply(lambda x: x.name).to_dict()
missing_values = df.isnull().sum().to_dict()
# Display metadata
st.write("### Column Details:")
st.write(pd.DataFrame({"Column": column_names, "Type": data_types.values(), "Missing Values": missing_values.values()}))
# User Query
query = st.text_input("Ask a question about this data:")
if st.button("Submit Query"):
if query:
# Interpret the query using selected LLM
if model_choice == "Mistral-7B":
parsed_query = ask_mistral(f"Convert this question into a Pandas operation: {query}")
elif model_choice == "Claude 3 Haiku":
parsed_query = ask_claude(f"Convert this question into a Pandas operation: {query}")
else:
parsed_query = ask_gpt(f"Convert this question into a Pandas operation: {query}")
# Validate and clean query
parsed_query = parsed_query.strip().replace("`", "")
st.write(f"Parsed Query: `{parsed_query}`")
# Check for column existence if query involves a column
for col in column_names:
if col in parsed_query and col not in df.columns:
st.error(f"Error: Column '{col}' not found in the uploaded file.")
break
else:
# Execute the query
try:
result = eval(parsed_query, {"df": df, "pd": pd}) # Ensuring df is correctly referenced
st.write("### Result:")
st.write(result if isinstance(result, pd.DataFrame) else str(result))
# If numerical data, show a visualization
if isinstance(result, pd.Series) and result.dtype in ["int64", "float64"]:
fig, ax = plt.subplots()
result.plot(kind="bar", ax=ax)
st.pyplot(fig)
except SyntaxError as e:
st.error(f"Syntax Error in parsed query: {str(e)}")
except Exception as e:
st.error(f"Error executing query: {str(e)}")
# Memory for context retention
if "query_history" not in st.session_state:
st.session_state.query_history = []
st.session_state.query_history.append(query)
|