Mock / app.py
garyd1's picture
Create app.py
5144ac6 verified
raw
history blame
4.92 kB
import gradio as gr
import numpy as np
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import PyPDF2
import torch
import gc
# Load local models for inference
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", torch_dtype=torch.float16)
conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill", torch_dtype=torch.float16)
tts_model = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech", torch_dtype=torch.float16)
# Load a pre-trained model for vector embeddings
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Parse PDF and create resume content
def parse_resume(pdf):
"""Extract text from an uploaded PDF file."""
reader = PyPDF2.PdfReader(pdf)
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
sections = {"Resume Content": text}
return sections
# Process job description text
def process_job_description(job_desc):
"""Encode the job description for analysis."""
return embedding_model.encode(job_desc)
# Process resume and generate embeddings
def process_resume(pdf):
resume_content = parse_resume(pdf)
resume_embeddings = {
section: embedding_model.encode(content) for section, content in resume_content.items()
}
return resume_embeddings
# Generate question from user response
def generate_question(user_input, resume_embeddings):
"""Find the most relevant section in the resume and generate a question."""
user_embedding = embedding_model.encode(user_input)
similarities = {
section: cosine_similarity([user_embedding], [embedding])[0][0]
for section, embedding in resume_embeddings.items()
}
most_relevant_section = max(similarities, key=similarities.get)
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
# Generate TTS output
def generate_audio(text):
"""Convert text to audio using Hugging Face TTS model."""
audio_data = tts_model(text, return_tensors=True)["waveform"]
return audio_data
# Gradio interface
class MockInterview:
def __init__(self):
self.resume_embeddings = None
self.job_desc_embedding = None
self.interview_active = False
def upload_inputs(self, resume, job_desc):
self.resume_embeddings = process_resume(resume)
self.job_desc_embedding = process_job_description(job_desc)
self.interview_active = True
question = "Tell me about yourself."
audio_output = generate_audio(question)
return "Resume and job description processed. Starting the interview.", audio_output
def conduct_interview(self, audio_file):
if not self.interview_active:
return "Please upload your resume and job description first.", None
# Transcribe audio
transcription = stt_model(audio_file)["text"]
if not transcription.strip():
return "No audio detected. Please try again.", None
# Generate next question
question = generate_question(transcription, self.resume_embeddings)
audio_output = generate_audio(question)
return transcription, audio_output
def end_interview(self):
self.interview_active = False
audio_output = generate_audio("Thank you for participating in the interview. Goodbye!")
return "Interview ended. Thank you for participating.", audio_output
mock_interview = MockInterview()
def upload_inputs(resume, job_desc):
return mock_interview.upload_inputs(resume, job_desc)
def conduct_interview(audio_file):
return mock_interview.conduct_interview(audio_file)
def end_interview():
return mock_interview.end_interview()
interface = gr.Blocks()
with interface:
gr.Markdown("""# Mock Interview AI
Upload your resume and job description, then engage in a realistic audio-based interview simulation.""")
with gr.Row():
resume_input = gr.File(label="Upload Resume (PDF)")
job_desc_input = gr.Textbox(label="Paste Job Description")
upload_button = gr.Button("Upload and Start Interview")
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Respond with Your Answer")
transcription_output = gr.Textbox(label="Transcription")
question_output = gr.Audio(label="Question Audio")
submit_button = gr.Button("Submit Response")
end_button = gr.Button("End Interview")
upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_output])
submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output])
end_button.click(end_interview, outputs=[transcription_output, question_output])
if __name__ == "__main__":
interface.launch()