garyd1 commited on
Commit
5dc2718
·
verified ·
1 Parent(s): ab7d608

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -9
app.py CHANGED
@@ -4,13 +4,14 @@ from transformers import pipeline
4
  from sentence_transformers import SentenceTransformer
5
  from sklearn.metrics.pairwise import cosine_similarity
6
  import PyPDF2
7
- import torch
8
- import gc
 
 
9
 
10
  # Load local models for inference
11
- stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", torch_dtype=torch.float16)
12
- conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill", torch_dtype=torch.float16)
13
- tts_model = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech", torch_dtype=torch.float16)
14
 
15
  # Load a pre-trained model for vector embeddings
16
  embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
@@ -49,9 +50,10 @@ def generate_question(user_input, resume_embeddings):
49
 
50
  # Generate TTS output
51
  def generate_audio(text):
52
- """Convert text to audio using Hugging Face TTS model."""
53
- audio_data = tts_model(text, return_tensors=True)["waveform"]
54
- return audio_data
 
55
 
56
  # Gradio interface
57
  class MockInterview:
@@ -120,4 +122,4 @@ Upload your resume and job description, then engage in a realistic audio-based i
120
  end_button.click(end_interview, outputs=[transcription_output, question_output])
121
 
122
  if __name__ == "__main__":
123
- interface.launch()
 
4
  from sentence_transformers import SentenceTransformer
5
  from sklearn.metrics.pairwise import cosine_similarity
6
  import PyPDF2
7
+ from TTS.api import TTS # Coqui TTS library
8
+
9
+ # Initialize TTS model
10
+ tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
11
 
12
  # Load local models for inference
13
+ stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
14
+ conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
 
15
 
16
  # Load a pre-trained model for vector embeddings
17
  embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
 
50
 
51
  # Generate TTS output
52
  def generate_audio(text):
53
+ """Convert text to audio using Coqui TTS."""
54
+ audio_path = "output.wav"
55
+ tts_model.tts_to_file(text=text, file_path=audio_path)
56
+ return audio_path
57
 
58
  # Gradio interface
59
  class MockInterview:
 
122
  end_button.click(end_interview, outputs=[transcription_output, question_output])
123
 
124
  if __name__ == "__main__":
125
+ interface.launch()