import gradio as gr import numpy as np from transformers import pipeline from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import PyPDF2 from TTS.api import TTS # Coqui TTS library # Initialize TTS model tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False) # Load local models for inference stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base") conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill") # Load a pre-trained model for vector embeddings embedding_model = SentenceTransformer('all-MiniLM-L6-v2') # Parse PDF and create resume content def parse_resume(pdf): """Extract text from an uploaded PDF file.""" reader = PyPDF2.PdfReader(pdf) text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text()) sections = {"Resume Content": text} return sections # Process job description text def process_job_description(job_desc): """Encode the job description for analysis.""" return embedding_model.encode(job_desc) # Process resume and generate embeddings def process_resume(pdf): resume_content = parse_resume(pdf) resume_embeddings = { section: embedding_model.encode(content) for section, content in resume_content.items() } return resume_embeddings # Generate question from user response def generate_question(user_input, resume_embeddings): """Find the most relevant section in the resume and generate a question.""" user_embedding = embedding_model.encode(user_input) similarities = { section: cosine_similarity([user_embedding], [embedding])[0][0] for section, embedding in resume_embeddings.items() } most_relevant_section = max(similarities, key=similarities.get) return f"Based on your experience in {most_relevant_section}, can you elaborate more?" # Generate TTS output def generate_audio(text): """Convert text to audio using Coqui TTS.""" audio_path = "output.wav" tts_model.tts_to_file(text=text, file_path=audio_path) return audio_path # Gradio interface class MockInterview: def __init__(self): self.resume_embeddings = None self.job_desc_embedding = None self.interview_active = False def upload_inputs(self, resume, job_desc): self.resume_embeddings = process_resume(resume) self.job_desc_embedding = process_job_description(job_desc) self.interview_active = True question = "Tell me about yourself." audio_output = generate_audio(question) return "Resume and job description processed. Starting the interview.", audio_output def conduct_interview(self, audio_file): if not self.interview_active: return "Please upload your resume and job description first.", None # Transcribe audio transcription = stt_model(audio_file)["text"] if not transcription.strip(): return "No audio detected. Please try again.", None # Generate next question question = generate_question(transcription, self.resume_embeddings) audio_output = generate_audio(question) return transcription, audio_output def end_interview(self): self.interview_active = False audio_output = generate_audio("Thank you for participating in the interview. Goodbye!") return "Interview ended. Thank you for participating.", audio_output mock_interview = MockInterview() def upload_inputs(resume, job_desc): return mock_interview.upload_inputs(resume, job_desc) def conduct_interview(audio_file): return mock_interview.conduct_interview(audio_file) def end_interview(): return mock_interview.end_interview() interface = gr.Blocks() with interface: gr.Markdown("""# Mock Interview AI Upload your resume and job description, then engage in a realistic audio-based interview simulation.""") with gr.Row(): resume_input = gr.File(label="Upload Resume (PDF)") job_desc_input = gr.Textbox(label="Paste Job Description") upload_button = gr.Button("Upload and Start Interview") with gr.Row(): audio_input = gr.Audio(type="filepath", label="Respond with Your Answer") transcription_output = gr.Textbox(label="Transcription") question_output = gr.Audio(label="Question Audio") submit_button = gr.Button("Submit Response") end_button = gr.Button("End Interview") upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_output]) submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output]) end_button.click(end_interview, outputs=[transcription_output, question_output]) if __name__ == "__main__": interface.launch()