mock_interview / app.py
garyd1's picture
Update app.py
a9d5b3e verified
raw
history blame
5.53 kB
import time
import os
import queue
import sounddevice as sd
import numpy as np
import requests
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import json
import PyPDF2
# Hugging Face API endpoint and keys
HF_API_URL_STT = "https://api-inference.huggingface.co/models/openai/whisper-base"
HF_API_URL_CONVERSATION = "https://api-inference.huggingface.co/models/facebook/blenderbot-400M-distill"
HF_API_KEY = os.getenv('HF_API_KEY') # Replace with your Hugging Face API key
# Parameters
silence_threshold = 0.01 # Silence threshold for audio detection
silence_duration = 2.0 # Duration of silence to detect end of speech
sample_rate = 16000 # Audio sample rate
# Audio buffer
audio_queue = queue.Queue()
# Load a pre-trained model for vector embeddings
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Parse PDF and create resume content
def parse_resume(pdf_path):
"""Extract text from a PDF file."""
try:
with open(pdf_path, 'rb') as f:
reader = PyPDF2.PdfReader(f)
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
sections = {"Resume Content": text}
return sections
except Exception as e:
print(f"Error reading PDF: {e}")
return {}
# Load vector database (resume content)
def load_resume(pdf_path):
resume_content = parse_resume(pdf_path)
resume_embeddings = {
section: embedding_model.encode(content) for section, content in resume_content.items()
}
return resume_embeddings
def get_relevant_question(user_input, resume_embeddings):
"""Find the most relevant section in the resume and generate a question."""
user_embedding = embedding_model.encode(user_input)
similarities = {
section: cosine_similarity([user_embedding], [embedding])[0][0]
for section, embedding in resume_embeddings.items()
}
most_relevant_section = max(similarities, key=similarities.get)
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
def audio_callback(indata, frames, time, status):
"""Audio callback to store audio in the queue."""
if status:
print(f"Audio error: {status}")
audio_queue.put(indata.copy())
def record_audio():
"""Record audio and stop on silence detection."""
print("Recording. Speak now!")
buffer = []
silence_start = None
with sd.InputStream(samplerate=sample_rate, channels=1, callback=audio_callback):
while True:
try:
# Fetch audio data
data = audio_queue.get()
buffer.append(data)
# Check for silence
rms = np.sqrt(np.mean(data**2))
if rms < silence_threshold:
if silence_start is None:
silence_start = time.time()
elif time.time() - silence_start > silence_duration:
print("Silence detected. Stopping recording.")
break
else:
silence_start = None
except KeyboardInterrupt:
print("Recording stopped by user.")
break
audio_data = np.concatenate(buffer, axis=0)
return audio_data
def transcribe_audio(audio_data):
"""Transcribe audio to text using Hugging Face Whisper API."""
print("Transcribing audio...")
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
response = requests.post(
HF_API_URL_STT,
headers=headers,
data=audio_data.tobytes(),
)
if response.status_code == 200:
return response.json().get("text", "")
else:
print(f"Error: {response.status_code} {response.text}")
return ""
def generate_question(response, resume_embeddings):
"""Generate a question based on the user's response using Hugging Face API."""
if resume_embeddings:
return get_relevant_question(response, resume_embeddings)
print("Generating a question...")
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
payload = {"inputs": {"past_user_inputs": [""], "generated_responses": [""], "text": response}}
response = requests.post(
HF_API_URL_CONVERSATION,
headers=headers,
json=payload
)
if response.status_code == 200:
return response.json().get("generated_text", "Could you elaborate on that?")
else:
print(f"Error: {response.status_code} {response.text}")
return "Sorry, I couldn't generate a question."
def main():
print("Mock Interview System Initialized")
# Load the resume embeddings
pdf_path = "resume.pdf" # Replace with the path to your PDF resume file
if os.path.exists(pdf_path):
print("Loading resume...")
resume_embeddings = load_resume(pdf_path)
else:
print("Resume file not found. Proceeding without it.")
resume_embeddings = None
while True:
try:
# Record audio
audio_data = record_audio()
# Transcribe to text
response = transcribe_audio(audio_data)
print(f"You said: {response}")
# Generate and ask the next question
question = generate_question(response, resume_embeddings)
print(f"Interview AI: {question}")
except Exception as e:
print(f"Error: {e}")
break
if __name__ == "__main__":
main()