Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import PyPDF2 | |
# Load local models for inference | |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base") | |
conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill") | |
tts_model = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech") | |
# Load a pre-trained model for vector embeddings | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Parse PDF and create resume content | |
def parse_resume(pdf): | |
"""Extract text from an uploaded PDF file.""" | |
reader = PyPDF2.PdfReader(pdf) | |
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text()) | |
sections = {"Resume Content": text} | |
return sections | |
# Process job description text | |
def process_job_description(job_desc): | |
"""Encode the job description for analysis.""" | |
return embedding_model.encode(job_desc) | |
# Process resume and generate embeddings | |
def process_resume(pdf): | |
resume_content = parse_resume(pdf) | |
resume_embeddings = { | |
section: embedding_model.encode(content) for section, content in resume_content.items() | |
} | |
return resume_embeddings | |
# Generate question from user response | |
def generate_question(user_input, resume_embeddings): | |
"""Find the most relevant section in the resume and generate a question.""" | |
user_embedding = embedding_model.encode(user_input) | |
similarities = { | |
section: cosine_similarity([user_embedding], [embedding])[0][0] | |
for section, embedding in resume_embeddings.items() | |
} | |
most_relevant_section = max(similarities, key=similarities.get) | |
return f"Based on your experience in {most_relevant_section}, can you elaborate more?" | |
# Generate TTS output | |
def generate_audio(text): | |
"""Convert text to audio using Hugging Face TTS model.""" | |
audio_data = tts_model(text, return_tensors=True)["waveform"] | |
return audio_data | |
# Gradio interface | |
class MockInterview: | |
def __init__(self): | |
self.resume_embeddings = None | |
self.job_desc_embedding = None | |
self.interview_active = False | |
def upload_inputs(self, resume, job_desc): | |
self.resume_embeddings = process_resume(resume) | |
self.job_desc_embedding = process_job_description(job_desc) | |
self.interview_active = True | |
question = "Tell me about yourself." | |
audio_output = generate_audio(question) | |
return "Resume and job description processed. Starting the interview.", audio_output | |
def conduct_interview(self, audio_file): | |
if not self.interview_active: | |
return "Please upload your resume and job description first.", None | |
# Transcribe audio | |
transcription = stt_model(audio_file)["text"] | |
if not transcription.strip(): | |
return "No audio detected. Please try again.", None | |
# Generate next question | |
question = generate_question(transcription, self.resume_embeddings) | |
audio_output = generate_audio(question) | |
return transcription, audio_output | |
def end_interview(self): | |
self.interview_active = False | |
audio_output = generate_audio("Thank you for participating in the interview. Goodbye!") | |
return "Interview ended. Thank you for participating.", audio_output | |
mock_interview = MockInterview() | |
def upload_inputs(resume, job_desc): | |
return mock_interview.upload_inputs(resume, job_desc) | |
def conduct_interview(audio_file): | |
return mock_interview.conduct_interview(audio_file) | |
def end_interview(): | |
return mock_interview.end_interview() | |
interface = gr.Blocks() | |
with interface: | |
gr.Markdown("""# Mock Interview AI | |
Upload your resume and job description, then engage in a realistic audio-based interview simulation.""") | |
with gr.Row(): | |
resume_input = gr.File(label="Upload Resume (PDF)") | |
job_desc_input = gr.Textbox(label="Paste Job Description") | |
upload_button = gr.Button("Upload and Start Interview") | |
with gr.Row(): | |
audio_input = gr.Audio(type="filepath", label="Respond with Your Answer") | |
transcription_output = gr.Textbox(label="Transcription") | |
question_output = gr.Audio(label="Question Audio") | |
submit_button = gr.Button("Submit Response") | |
end_button = gr.Button("End Interview") | |
upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_output]) | |
submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output]) | |
end_button.click(end_interview, outputs=[transcription_output, question_output]) | |
if __name__ == "__main__": | |
interface.launch() | |