garyd1 commited on
Commit
3fb95e1
·
verified ·
1 Parent(s): f561674

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -29
app.py CHANGED
@@ -4,24 +4,15 @@ from transformers import pipeline
4
  from sentence_transformers import SentenceTransformer
5
  from sklearn.metrics.pairwise import cosine_similarity
6
  import PyPDF2
7
- import pyttsx3
8
- import time
9
 
10
  # Load local models for inference
11
  stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
12
  conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
 
13
 
14
  # Load a pre-trained model for vector embeddings
15
  embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
16
 
17
- # Text-to-Speech engine setup
18
- tts_engine = pyttsx3.init()
19
-
20
- def speak_text(text):
21
- """Speak the given text using TTS engine."""
22
- tts_engine.say(text)
23
- tts_engine.runAndWait()
24
-
25
  # Parse PDF and create resume content
26
  def parse_resume(pdf):
27
  """Extract text from an uploaded PDF file."""
@@ -54,6 +45,12 @@ def generate_question(user_input, resume_embeddings):
54
  most_relevant_section = max(similarities, key=similarities.get)
55
  return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
56
 
 
 
 
 
 
 
57
  # Gradio interface
58
  class MockInterview:
59
  def __init__(self):
@@ -65,42 +62,34 @@ class MockInterview:
65
  self.resume_embeddings = process_resume(resume)
66
  self.job_desc_embedding = process_job_description(job_desc)
67
  self.interview_active = True
68
- return "Resume and job description processed. Starting the interview."
69
-
70
- def start_interview(self):
71
- if not self.interview_active:
72
- return "Please upload your resume and job description first."
73
  question = "Tell me about yourself."
74
- speak_text(question)
75
- return question
76
 
77
  def conduct_interview(self, audio_file):
78
  if not self.interview_active:
79
- return "Please upload your resume and job description first.", ""
80
 
81
  # Transcribe audio
82
  transcription = stt_model(audio_file)["text"]
83
  if not transcription.strip():
84
- return "No audio detected. Please try again.", ""
85
 
86
  # Generate next question
87
  question = generate_question(transcription, self.resume_embeddings)
88
- speak_text(question)
89
- return transcription, question
90
 
91
  def end_interview(self):
92
  self.interview_active = False
93
- speak_text("Thank you for participating in the interview. Goodbye!")
94
- return "Interview ended. Thank you for participating."
95
 
96
  mock_interview = MockInterview()
97
 
98
  def upload_inputs(resume, job_desc):
99
  return mock_interview.upload_inputs(resume, job_desc)
100
 
101
- def start_interview():
102
- return mock_interview.start_interview()
103
-
104
  def conduct_interview(audio_file):
105
  return mock_interview.conduct_interview(audio_file)
106
 
@@ -120,13 +109,13 @@ Upload your resume and job description, then engage in a realistic audio-based i
120
  with gr.Row():
121
  audio_input = gr.Audio(type="filepath", label="Respond with Your Answer")
122
  transcription_output = gr.Textbox(label="Transcription")
123
- question_output = gr.Textbox(label="Question")
124
  submit_button = gr.Button("Submit Response")
125
  end_button = gr.Button("End Interview")
126
 
127
- upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[question_output])
128
  submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output])
129
- end_button.click(end_interview, outputs=[question_output])
130
 
131
  if __name__ == "__main__":
132
  interface.launch()
 
4
  from sentence_transformers import SentenceTransformer
5
  from sklearn.metrics.pairwise import cosine_similarity
6
  import PyPDF2
 
 
7
 
8
  # Load local models for inference
9
  stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
10
  conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
11
+ tts_model = pipeline("text-to-speech", model="espnet/fastspeech2-en-ljspeech")
12
 
13
  # Load a pre-trained model for vector embeddings
14
  embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
15
 
 
 
 
 
 
 
 
 
16
  # Parse PDF and create resume content
17
  def parse_resume(pdf):
18
  """Extract text from an uploaded PDF file."""
 
45
  most_relevant_section = max(similarities, key=similarities.get)
46
  return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
47
 
48
+ # Generate TTS output
49
+ def generate_audio(text):
50
+ """Convert text to audio using TTS model."""
51
+ audio_data = tts_model(text, return_tensors=True)["waveform"]
52
+ return audio_data
53
+
54
  # Gradio interface
55
  class MockInterview:
56
  def __init__(self):
 
62
  self.resume_embeddings = process_resume(resume)
63
  self.job_desc_embedding = process_job_description(job_desc)
64
  self.interview_active = True
 
 
 
 
 
65
  question = "Tell me about yourself."
66
+ audio_output = generate_audio(question)
67
+ return "Resume and job description processed. Starting the interview.", audio_output
68
 
69
  def conduct_interview(self, audio_file):
70
  if not self.interview_active:
71
+ return "Please upload your resume and job description first.", None
72
 
73
  # Transcribe audio
74
  transcription = stt_model(audio_file)["text"]
75
  if not transcription.strip():
76
+ return "No audio detected. Please try again.", None
77
 
78
  # Generate next question
79
  question = generate_question(transcription, self.resume_embeddings)
80
+ audio_output = generate_audio(question)
81
+ return transcription, audio_output
82
 
83
  def end_interview(self):
84
  self.interview_active = False
85
+ audio_output = generate_audio("Thank you for participating in the interview. Goodbye!")
86
+ return "Interview ended. Thank you for participating.", audio_output
87
 
88
  mock_interview = MockInterview()
89
 
90
  def upload_inputs(resume, job_desc):
91
  return mock_interview.upload_inputs(resume, job_desc)
92
 
 
 
 
93
  def conduct_interview(audio_file):
94
  return mock_interview.conduct_interview(audio_file)
95
 
 
109
  with gr.Row():
110
  audio_input = gr.Audio(type="filepath", label="Respond with Your Answer")
111
  transcription_output = gr.Textbox(label="Transcription")
112
+ question_output = gr.Audio(label="Question Audio")
113
  submit_button = gr.Button("Submit Response")
114
  end_button = gr.Button("End Interview")
115
 
116
+ upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_output])
117
  submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output])
118
+ end_button.click(end_interview, outputs=[transcription_output, question_output])
119
 
120
  if __name__ == "__main__":
121
  interface.launch()