Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,24 +4,15 @@ from transformers import pipeline
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
import PyPDF2
|
7 |
-
import pyttsx3
|
8 |
-
import time
|
9 |
|
10 |
# Load local models for inference
|
11 |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
12 |
conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
|
|
|
13 |
|
14 |
# Load a pre-trained model for vector embeddings
|
15 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
16 |
|
17 |
-
# Text-to-Speech engine setup
|
18 |
-
tts_engine = pyttsx3.init()
|
19 |
-
|
20 |
-
def speak_text(text):
|
21 |
-
"""Speak the given text using TTS engine."""
|
22 |
-
tts_engine.say(text)
|
23 |
-
tts_engine.runAndWait()
|
24 |
-
|
25 |
# Parse PDF and create resume content
|
26 |
def parse_resume(pdf):
|
27 |
"""Extract text from an uploaded PDF file."""
|
@@ -54,6 +45,12 @@ def generate_question(user_input, resume_embeddings):
|
|
54 |
most_relevant_section = max(similarities, key=similarities.get)
|
55 |
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Gradio interface
|
58 |
class MockInterview:
|
59 |
def __init__(self):
|
@@ -65,42 +62,34 @@ class MockInterview:
|
|
65 |
self.resume_embeddings = process_resume(resume)
|
66 |
self.job_desc_embedding = process_job_description(job_desc)
|
67 |
self.interview_active = True
|
68 |
-
return "Resume and job description processed. Starting the interview."
|
69 |
-
|
70 |
-
def start_interview(self):
|
71 |
-
if not self.interview_active:
|
72 |
-
return "Please upload your resume and job description first."
|
73 |
question = "Tell me about yourself."
|
74 |
-
|
75 |
-
return
|
76 |
|
77 |
def conduct_interview(self, audio_file):
|
78 |
if not self.interview_active:
|
79 |
-
return "Please upload your resume and job description first.",
|
80 |
|
81 |
# Transcribe audio
|
82 |
transcription = stt_model(audio_file)["text"]
|
83 |
if not transcription.strip():
|
84 |
-
return "No audio detected. Please try again.",
|
85 |
|
86 |
# Generate next question
|
87 |
question = generate_question(transcription, self.resume_embeddings)
|
88 |
-
|
89 |
-
return transcription,
|
90 |
|
91 |
def end_interview(self):
|
92 |
self.interview_active = False
|
93 |
-
|
94 |
-
return "Interview ended. Thank you for participating."
|
95 |
|
96 |
mock_interview = MockInterview()
|
97 |
|
98 |
def upload_inputs(resume, job_desc):
|
99 |
return mock_interview.upload_inputs(resume, job_desc)
|
100 |
|
101 |
-
def start_interview():
|
102 |
-
return mock_interview.start_interview()
|
103 |
-
|
104 |
def conduct_interview(audio_file):
|
105 |
return mock_interview.conduct_interview(audio_file)
|
106 |
|
@@ -120,13 +109,13 @@ Upload your resume and job description, then engage in a realistic audio-based i
|
|
120 |
with gr.Row():
|
121 |
audio_input = gr.Audio(type="filepath", label="Respond with Your Answer")
|
122 |
transcription_output = gr.Textbox(label="Transcription")
|
123 |
-
question_output = gr.
|
124 |
submit_button = gr.Button("Submit Response")
|
125 |
end_button = gr.Button("End Interview")
|
126 |
|
127 |
-
upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[question_output])
|
128 |
submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output])
|
129 |
-
end_button.click(end_interview, outputs=[question_output])
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
interface.launch()
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
import PyPDF2
|
|
|
|
|
7 |
|
8 |
# Load local models for inference
|
9 |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
10 |
conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
|
11 |
+
tts_model = pipeline("text-to-speech", model="espnet/fastspeech2-en-ljspeech")
|
12 |
|
13 |
# Load a pre-trained model for vector embeddings
|
14 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Parse PDF and create resume content
|
17 |
def parse_resume(pdf):
|
18 |
"""Extract text from an uploaded PDF file."""
|
|
|
45 |
most_relevant_section = max(similarities, key=similarities.get)
|
46 |
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
|
47 |
|
48 |
+
# Generate TTS output
|
49 |
+
def generate_audio(text):
|
50 |
+
"""Convert text to audio using TTS model."""
|
51 |
+
audio_data = tts_model(text, return_tensors=True)["waveform"]
|
52 |
+
return audio_data
|
53 |
+
|
54 |
# Gradio interface
|
55 |
class MockInterview:
|
56 |
def __init__(self):
|
|
|
62 |
self.resume_embeddings = process_resume(resume)
|
63 |
self.job_desc_embedding = process_job_description(job_desc)
|
64 |
self.interview_active = True
|
|
|
|
|
|
|
|
|
|
|
65 |
question = "Tell me about yourself."
|
66 |
+
audio_output = generate_audio(question)
|
67 |
+
return "Resume and job description processed. Starting the interview.", audio_output
|
68 |
|
69 |
def conduct_interview(self, audio_file):
|
70 |
if not self.interview_active:
|
71 |
+
return "Please upload your resume and job description first.", None
|
72 |
|
73 |
# Transcribe audio
|
74 |
transcription = stt_model(audio_file)["text"]
|
75 |
if not transcription.strip():
|
76 |
+
return "No audio detected. Please try again.", None
|
77 |
|
78 |
# Generate next question
|
79 |
question = generate_question(transcription, self.resume_embeddings)
|
80 |
+
audio_output = generate_audio(question)
|
81 |
+
return transcription, audio_output
|
82 |
|
83 |
def end_interview(self):
|
84 |
self.interview_active = False
|
85 |
+
audio_output = generate_audio("Thank you for participating in the interview. Goodbye!")
|
86 |
+
return "Interview ended. Thank you for participating.", audio_output
|
87 |
|
88 |
mock_interview = MockInterview()
|
89 |
|
90 |
def upload_inputs(resume, job_desc):
|
91 |
return mock_interview.upload_inputs(resume, job_desc)
|
92 |
|
|
|
|
|
|
|
93 |
def conduct_interview(audio_file):
|
94 |
return mock_interview.conduct_interview(audio_file)
|
95 |
|
|
|
109 |
with gr.Row():
|
110 |
audio_input = gr.Audio(type="filepath", label="Respond with Your Answer")
|
111 |
transcription_output = gr.Textbox(label="Transcription")
|
112 |
+
question_output = gr.Audio(label="Question Audio")
|
113 |
submit_button = gr.Button("Submit Response")
|
114 |
end_button = gr.Button("End Interview")
|
115 |
|
116 |
+
upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_output])
|
117 |
submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output])
|
118 |
+
end_button.click(end_interview, outputs=[transcription_output, question_output])
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
interface.launch()
|