garyd1 commited on
Commit
912706a
·
verified ·
1 Parent(s): 3e6e3a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -7,7 +7,7 @@ import PyPDF2
7
 
8
  # Load local models for inference
9
  stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
10
- conversation_model = pipeline("conversational", model="facebook/blenderbot-400M-distill")
11
 
12
  # Load a pre-trained model for vector embeddings
13
  embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
@@ -28,6 +28,12 @@ def process_resume(pdf):
28
  }
29
  return resume_embeddings
30
 
 
 
 
 
 
 
31
  # Generate question from user response
32
  def generate_question(user_input, resume_embeddings):
33
  """Find the most relevant section in the resume and generate a question."""
 
7
 
8
  # Load local models for inference
9
  stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
10
+ conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
11
 
12
  # Load a pre-trained model for vector embeddings
13
  embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
 
28
  }
29
  return resume_embeddings
30
 
31
+ # Generate a conversation response
32
+ def generate_conversation_response(user_input):
33
+ prompt = f"The user said: {user_input}. Respond appropriately as a recruiter."
34
+ response = conversation_model(prompt, max_length=100, num_return_sequences=1)
35
+ return response[0]["generated_text"]
36
+
37
  # Generate question from user response
38
  def generate_question(user_input, resume_embeddings):
39
  """Find the most relevant section in the resume and generate a question."""