Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import PyPDF2
|
|
| 7 |
|
| 8 |
# Load local models for inference
|
| 9 |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
| 10 |
-
conversation_model = pipeline("
|
| 11 |
|
| 12 |
# Load a pre-trained model for vector embeddings
|
| 13 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
@@ -28,6 +28,12 @@ def process_resume(pdf):
|
|
| 28 |
}
|
| 29 |
return resume_embeddings
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Generate question from user response
|
| 32 |
def generate_question(user_input, resume_embeddings):
|
| 33 |
"""Find the most relevant section in the resume and generate a question."""
|
|
|
|
| 7 |
|
| 8 |
# Load local models for inference
|
| 9 |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
| 10 |
+
conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
|
| 11 |
|
| 12 |
# Load a pre-trained model for vector embeddings
|
| 13 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
| 28 |
}
|
| 29 |
return resume_embeddings
|
| 30 |
|
| 31 |
+
# Generate a conversation response
|
| 32 |
+
def generate_conversation_response(user_input):
|
| 33 |
+
prompt = f"The user said: {user_input}. Respond appropriately as a recruiter."
|
| 34 |
+
response = conversation_model(prompt, max_length=100, num_return_sequences=1)
|
| 35 |
+
return response[0]["generated_text"]
|
| 36 |
+
|
| 37 |
# Generate question from user response
|
| 38 |
def generate_question(user_input, resume_embeddings):
|
| 39 |
"""Find the most relevant section in the resume and generate a question."""
|