garyd1 commited on
Commit
e03fb29
·
verified ·
1 Parent(s): 48482d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -15
app.py CHANGED
@@ -4,6 +4,8 @@ from transformers import pipeline
4
  from sentence_transformers import SentenceTransformer
5
  from sklearn.metrics.pairwise import cosine_similarity
6
  import PyPDF2
 
 
7
 
8
  # Load local models for inference
9
  stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
@@ -50,6 +52,21 @@ def generate_question(user_input, resume_embeddings, job_desc_embedding):
50
  most_relevant_section = max(similarities, key=similarities.get)
51
  return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  # Gradio interface
54
  class MockInterview:
55
  def __init__(self):
@@ -61,13 +78,13 @@ class MockInterview:
61
  self.resume_embeddings = process_resume(resume)
62
  self.job_desc_embedding = process_job_description(job_desc)
63
  self.interview_active = True
64
- return "Resume and job description processed. Interview is ready to begin."
65
 
66
- def conduct_interview(self, audio):
67
  if not self.interview_active:
68
  return "Please upload your resume and job description first.", ""
69
 
70
- transcription = stt_model(audio)["text"] # Transcribe audio
71
  question = generate_question(transcription, self.resume_embeddings, self.job_desc_embedding)
72
  return transcription, question
73
 
@@ -80,11 +97,16 @@ mock_interview = MockInterview()
80
  def upload_inputs(resume, job_desc):
81
  return mock_interview.upload_inputs(resume, job_desc)
82
 
83
- def conduct_interview(audio):
84
- return mock_interview.conduct_interview(audio)
 
 
 
 
 
 
85
 
86
- def end_interview():
87
- return mock_interview.end_interview()
88
 
89
  interface = gr.Blocks()
90
  with interface:
@@ -94,20 +116,15 @@ Upload your resume and job description, then engage in a realistic interview sim
94
  with gr.Row():
95
  resume_input = gr.File(label="Upload Resume (PDF)")
96
  job_desc_input = gr.Textbox(label="Paste Job Description")
97
- upload_button = gr.Button("Upload")
98
-
99
- with gr.Row():
100
- audio_input = gr.Audio(type="filepath", label="Speak Your Answer")
101
- submit_button = gr.Button("Submit Response")
102
- end_button = gr.Button("End Interview")
103
 
104
  with gr.Row():
105
  transcription_output = gr.Textbox(label="Transcription")
106
  question_output = gr.Textbox(label="Question")
 
107
 
108
  upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output])
109
- submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output])
110
- end_button.click(end_interview, outputs=[transcription_output])
111
 
112
  if __name__ == "__main__":
113
  interface.launch()
 
4
  from sentence_transformers import SentenceTransformer
5
  from sklearn.metrics.pairwise import cosine_similarity
6
  import PyPDF2
7
+ import sounddevice as sd
8
+ import queue
9
 
10
  # Load local models for inference
11
  stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
 
52
  most_relevant_section = max(similarities, key=similarities.get)
53
  return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
54
 
55
+ # Real-time audio recording and processing
56
+ def record_audio(callback):
57
+ """Record audio and process it in real-time."""
58
+ q = queue.Queue()
59
+
60
+ def audio_callback(indata, frames, time, status):
61
+ if status:
62
+ print(status)
63
+ q.put(indata.copy())
64
+
65
+ with sd.InputStream(samplerate=16000, channels=1, callback=audio_callback):
66
+ while True:
67
+ audio_data = q.get()
68
+ callback(audio_data)
69
+
70
  # Gradio interface
71
  class MockInterview:
72
  def __init__(self):
 
78
  self.resume_embeddings = process_resume(resume)
79
  self.job_desc_embedding = process_job_description(job_desc)
80
  self.interview_active = True
81
+ return "Resume and job description processed. Interview is starting."
82
 
83
+ def conduct_interview(self, audio_data):
84
  if not self.interview_active:
85
  return "Please upload your resume and job description first.", ""
86
 
87
+ transcription = stt_model(audio_data)["text"] # Transcribe audio
88
  question = generate_question(transcription, self.resume_embeddings, self.job_desc_embedding)
89
  return transcription, question
90
 
 
97
  def upload_inputs(resume, job_desc):
98
  return mock_interview.upload_inputs(resume, job_desc)
99
 
100
+ def start_interview(audio_data_callback):
101
+ """Start the interview automatically, processing audio in real-time."""
102
+ if not mock_interview.interview_active:
103
+ return "Please upload your resume and job description first."
104
+
105
+ def process_audio(audio_data):
106
+ transcription, question = mock_interview.conduct_interview(audio_data)
107
+ audio_data_callback(transcription, question)
108
 
109
+ record_audio(process_audio)
 
110
 
111
  interface = gr.Blocks()
112
  with interface:
 
116
  with gr.Row():
117
  resume_input = gr.File(label="Upload Resume (PDF)")
118
  job_desc_input = gr.Textbox(label="Paste Job Description")
119
+ upload_button = gr.Button("Upload and Start Interview")
 
 
 
 
 
120
 
121
  with gr.Row():
122
  transcription_output = gr.Textbox(label="Transcription")
123
  question_output = gr.Textbox(label="Question")
124
+ end_button = gr.Button("End Interview")
125
 
126
  upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output])
127
+ end_button.click(mock_interview.end_interview, outputs=[transcription_output])
 
128
 
129
  if __name__ == "__main__":
130
  interface.launch()