import gradio as gr import numpy as np from transformers import pipeline from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import PyPDF2 # Load local models for inference stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base") conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill") # Load a pre-trained model for vector embeddings embedding_model = SentenceTransformer('all-MiniLM-L6-v2') # Parse PDF and create resume content def parse_resume(pdf): """Extract text from an uploaded PDF file.""" reader = PyPDF2.PdfReader(pdf) text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text()) sections = {"Resume Content": text} return sections # Process resume and generate embeddings def process_resume(pdf): resume_content = parse_resume(pdf) resume_embeddings = { section: embedding_model.encode(content) for section, content in resume_content.items() } return resume_embeddings # Generate a conversation response def generate_conversation_response(user_input): prompt = f"The user said: {user_input}. Respond appropriately as a recruiter." response = conversation_model(prompt, max_length=100, num_return_sequences=1) return response[0]["generated_text"] # Generate question from user response def generate_question(user_input, resume_embeddings): """Find the most relevant section in the resume and generate a question.""" user_embedding = embedding_model.encode(user_input) similarities = { section: cosine_similarity([user_embedding], [embedding])[0][0] for section, embedding in resume_embeddings.items() } most_relevant_section = max(similarities, key=similarities.get) return f"Based on your experience in {most_relevant_section}, can you elaborate more?" # Gradio interface def mock_interview(audio, pdf): resume_embeddings = process_resume(pdf) transcription = stt_model(audio["name"]) # Using Gradio's audio file object question = generate_question(transcription["text"], resume_embeddings) return transcription["text"], question interface = gr.Interface( fn=mock_interview, inputs=[gr.Audio(type="filepath"), gr.File(label="Upload Resume (PDF)")], outputs=["text", "text"], title="Mock Interview AI", description="Upload your resume and answer questions in a mock interview." ) if __name__ == "__main__": interface.launch()