import gradio as gr import numpy as np from transformers import pipeline from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import PyPDF2 import sounddevice as sd import queue # Load local models for inference stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base") conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill") # Load a pre-trained model for vector embeddings embedding_model = SentenceTransformer('all-MiniLM-L6-v2') # Parse PDF and create resume content def parse_resume(pdf): """Extract text from an uploaded PDF file.""" reader = PyPDF2.PdfReader(pdf) text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text()) sections = {"Resume Content": text} return sections # Process job description text def process_job_description(job_desc): """Encode the job description for analysis.""" return embedding_model.encode(job_desc) # Process resume and generate embeddings def process_resume(pdf): resume_content = parse_resume(pdf) resume_embeddings = { section: embedding_model.encode(content) for section, content in resume_content.items() } return resume_embeddings # Generate a conversation response def generate_conversation_response(user_input, job_desc_embedding): prompt = f"The user said: {user_input}. Respond appropriately as a professional hiring manager. Focus on how the response relates to the job description." response = conversation_model(prompt, max_length=100, num_return_sequences=1) return response[0]["generated_text"] # Generate question from user response def generate_question(user_input, resume_embeddings, job_desc_embedding): """Find the most relevant section in the resume and generate a question.""" user_embedding = embedding_model.encode(user_input) similarities = { section: cosine_similarity([user_embedding], [embedding])[0][0] for section, embedding in resume_embeddings.items() } most_relevant_section = max(similarities, key=similarities.get) return f"Based on your experience in {most_relevant_section}, can you elaborate more?" # Real-time audio recording and processing def record_audio(callback): """Record audio and process it in real-time.""" q = queue.Queue() def audio_callback(indata, frames, time, status): if status: print(status) q.put(indata.copy()) with sd.InputStream(samplerate=16000, channels=1, callback=audio_callback): while True: audio_data = q.get() callback(audio_data) # Gradio interface class MockInterview: def __init__(self): self.resume_embeddings = None self.job_desc_embedding = None self.interview_active = False def upload_inputs(self, resume, job_desc): self.resume_embeddings = process_resume(resume) self.job_desc_embedding = process_job_description(job_desc) self.interview_active = True return "Resume and job description processed. Interview is starting." def conduct_interview(self, audio_data): if not self.interview_active: return "Please upload your resume and job description first.", "" transcription = stt_model(audio_data)["text"] # Transcribe audio question = generate_question(transcription, self.resume_embeddings, self.job_desc_embedding) return transcription, question def end_interview(self): self.interview_active = False return "Interview ended. Thank you for participating." mock_interview = MockInterview() def upload_inputs(resume, job_desc): return mock_interview.upload_inputs(resume, job_desc) def start_interview(audio_data_callback): """Start the interview automatically, processing audio in real-time.""" if not mock_interview.interview_active: return "Please upload your resume and job description first." def process_audio(audio_data): transcription, question = mock_interview.conduct_interview(audio_data) audio_data_callback(transcription, question) record_audio(process_audio) interface = gr.Blocks() with interface: gr.Markdown("""# Mock Interview AI Upload your resume and job description, then engage in a realistic interview simulation.""") with gr.Row(): resume_input = gr.File(label="Upload Resume (PDF)") job_desc_input = gr.Textbox(label="Paste Job Description") upload_button = gr.Button("Upload and Start Interview") with gr.Row(): transcription_output = gr.Textbox(label="Transcription") question_output = gr.Textbox(label="Question") end_button = gr.Button("End Interview") upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output]) end_button.click(mock_interview.end_interview, outputs=[transcription_output]) if __name__ == "__main__": interface.launch()