File size: 4,979 Bytes
b4884e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2851ae4
b4884e4
 
 
c76ca13
b4884e4
 
 
 
 
 
 
 
c76ca13
b4884e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b11f498
 
94e245c
b4884e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7f78
 
 
 
 
 
b4884e4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import shutil
import streamlit as st
from dotenv import load_dotenv
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_groq import ChatGroq
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from streamlit_chat import message

# Load environment variables
load_dotenv()
os.environ['GROQ_API_KEY'] = os.getenv('GROQ_API')
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = os.getenv('LANGSMITH_API')

UPLOAD_DIR = "uploaded_files"

def cleanup_files():
    if os.path.isdir(UPLOAD_DIR):
        shutil.rmtree(UPLOAD_DIR, ignore_errors=True)
    if 'file_handle' in st.session_state:
        st.session_state.file_handle.close()


if 'cleanup_done' not in st.session_state:
    st.session_state.cleanup_done = False

if not st.session_state.cleanup_done:
    cleanup_files()

if not os.path.exists(UPLOAD_DIR):
    os.makedirs(UPLOAD_DIR, exist_ok=True)

# Custom CSS for Wattpad-like theme with background and header
st.markdown(
    """
    <style>
    body {
        background-color: #FFF7F0;
        color: #333333;
        font-family: 'Helvetica Neue', sans-serif;
        background-image: url('https://drive.google.com/uc?export=view&id=17Vg5hM0-X7fUy2BdYCFqSAQtJVDqYErU');
        background-size: cover;
        background-position: top center;
    }
    .stButton button {
        background-color: #FF5000;
        color: white;
        border-radius: 12px;
        border: none;
        padding: 10px 20px;
        font-weight: bold;
    }
    .stButton button:hover {
        background-color: #E64500;
    }
    .stTextInput > div > input {
        border: 1px solid #FF5000;
        border-radius: 10px;
        padding: 10px;
    }
    .stFileUploader > div {
        border: 2px dashed #FF5000;
        border-radius: 10px;
        padding: 10px;
    }
    .header {
        display: flex;
        align-items: center;
        gap: 10px;
        padding-top: 50px;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Wattpad-like header without logo
st.markdown(
    """
    <div class="header" style="display: flex; align-items: center; gap: 10px;">
        <h1 style="color: #FF5000; font-weight: bold;">Hi, we're here to help you.</h1>
    </div>
    """,
    unsafe_allow_html=True
)

# Spacer to push chatbot below the header
st.write("<div style='height: 100px;'></div>", unsafe_allow_html=True)

st.title("Chat with your PDF!!")

uploaded_file = st.file_uploader("Upload a file")

if uploaded_file is not None:
    file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
    file_path = os.path.abspath(file_path)

    with open(file_path, 'wb') as f:
        f.write(uploaded_file.getbuffer())
    st.write("You're Ready For a Chat with your PDF")

    docs = PyPDFLoader(file_path).load_and_split()

    embedding = HuggingFaceEmbeddings(
        model_name='BAAI/llm-embedder',
    )

    store = LocalFileStore("./cache/")
    cached_embedder = CacheBackedEmbeddings.from_bytes_store(
        embedding, store, namespace='embeddings'
    )

    vector_base = FAISS.from_documents(
        docs,
        embedding
    )

    template = ''''''

    
    prompt = ChatPromptTemplate.from_template(template)
    retriever = vector_base.as_retriever()

    llm = ChatGroq(
        model='mixtral-8x7b-32768',
        temperature=0,
    )

    if 'history' not in st.session_state:
        st.session_state.history = []

    query = st.text_input("Enter your question", placeholder="Ask something interesting...")

    if st.button("Submit!", key="submit_button"):
        if query:
            chain = (
                {'context': retriever, 'question': RunnablePassthrough()} 
                | prompt | llm | StrOutputParser()
            )
            answer = chain.invoke(query)
            st.session_state.history.append({'question': query, 'answer': answer})

    if st.session_state.history:
        st.write("### Previous Questions and Answers")
        for idx, entry in enumerate(st.session_state.history):
            st.markdown(
                f"""
                <div style="background-color: #FFFAF5; padding: 10px; border-radius: 10px; margin-bottom: 10px;">
                    <p style="font-weight: bold; color: #FF5000;">Q{idx + 1}: {entry['question']}</p>
                    <p style="color: #333333;">A{idx + 1}: {entry['answer']}</p>
                </div>
                """,
                unsafe_allow_html=True
            )

# Reset functionality
if st.button("Reset and Upload a New PDF"):
    st.session_state.clear()
    st.session_state.cleanup_done = False
    st.experimental_rerun()

if st.session_state.cleanup_done:
    cleanup_files()