Spaces:
Sleeping
Sleeping
import os | |
import re | |
import openai | |
import streamlit as st | |
import pandas as pd | |
import torch | |
import nltk | |
import time | |
import subprocess | |
from concurrent.futures import ThreadPoolExecutor | |
from langchain_openai import ChatOpenAI | |
from langchain.schema import SystemMessage, HumanMessage | |
from sentence_transformers import SentenceTransformer, util | |
# Ensure necessary NLP models are available | |
try: | |
nltk.data.find("tokenizers/punkt") | |
except LookupError: | |
print("Downloading NLTK punkt tokenizer...") | |
nltk.download("punkt") | |
try: | |
import spacy | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
print("Downloading SpaCy model...") | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Load AI models | |
translator = ChatOpenAI(model="gpt-3.5-turbo") | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
def load_glossary_from_excel(glossary_file_bytes) -> dict: | |
"""Load glossary from an Excel file.""" | |
df = pd.read_excel(glossary_file_bytes) | |
glossary = {} | |
for _, row in df.iterrows(): | |
if pd.notnull(row['English']) and pd.notnull(row['CanadianFrench']): | |
glossary[row['English'].strip().lower()] = row['CanadianFrench'].strip() | |
return glossary | |
def retry_translate_text(text: str, glossary: dict, max_retries=3) -> str: | |
"""Ensures GPT prioritizes glossary terms using system messages.""" | |
glossary_prompt = "\n".join([f"{eng} → {fr}" for eng, fr in glossary.items()]) | |
messages = [ | |
SystemMessage(content=f"Translate the following text to Canadian French while ensuring strict glossary replacements.\n\nGlossary:\n{glossary_prompt}"), | |
HumanMessage(content=text) | |
] | |
for attempt in range(max_retries): | |
try: | |
response = translator(messages) | |
return response.content.strip() | |
except Exception as e: | |
print(f"Error in translation (attempt {attempt+1}): {e}") | |
time.sleep(2) | |
return "Translation failed. Please try again later." | |
def enforce_glossary_with_semantics(text: str, glossary: dict, threshold: float) -> str: | |
"""Uses embeddings to enforce glossary replacement intelligently.""" | |
glossary_terms = list(glossary.keys()) | |
glossary_embeddings = model.encode(glossary_terms, convert_to_tensor=True) | |
sentences = nltk.tokenize.sent_tokenize(text) if not nlp else [sent.text for sent in nlp(text).sents] | |
def process_sentence(sentence): | |
sentence_embedding = model.encode(sentence, convert_to_tensor=True) | |
cos_scores = util.pytorch_cos_sim(sentence_embedding, glossary_embeddings) | |
max_score, max_idx = torch.max(cos_scores, dim=1) | |
if max_score.item() >= threshold: | |
term = glossary_terms[max_idx] | |
replacement = glossary[term] | |
sentence = sentence.replace(term, replacement) | |
return sentence.strip() | |
with ThreadPoolExecutor() as executor: | |
updated_sentences = list(executor.map(process_sentence, sentences)) | |
return " ".join(updated_sentences) | |
# Streamlit UI | |
st.title("AI-Powered English to Canadian French Translator") | |
st.write("This version guarantees glossary enforcement.") | |
input_text = st.text_area("Enter text to translate:") | |
glossary_file = st.file_uploader("Upload Glossary File (Excel)", type=["xlsx"]) | |
threshold = st.slider("Semantic Matching Threshold", 0.5, 1.0, 0.75) | |
if st.button("Translate"): | |
if not input_text.strip(): | |
st.error("Please enter text to translate.") | |
elif glossary_file is None: | |
st.error("Glossary file is required.") | |
else: | |
glossary = load_glossary_from_excel(glossary_file) | |
# Step 1: Translate Text with GPT (Forcing Glossary) | |
translated_text = retry_translate_text(input_text, glossary) | |
# Step 2: Apply Semantic Matching to Guarantee Glossary | |
glossary_enforced_text = enforce_glossary_with_semantics(translated_text, glossary, threshold) | |
st.subheader("Final Translated Text:") | |
st.write(glossary_enforced_text) | |