Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -56,12 +56,19 @@ def compute_glossary_embeddings_cached(glossary_items: tuple):
|
|
56 |
embeddings = model.encode(glossary_terms, convert_to_tensor=True)
|
57 |
return glossary_terms, embeddings
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def retry_translate_text(text: str, max_retries=3) -> str:
|
60 |
"""Retries translation in case of API failure."""
|
61 |
for attempt in range(max_retries):
|
62 |
try:
|
63 |
messages = [
|
64 |
-
SystemMessage(content="You are a professional translator. Translate the following text to Canadian French while preserving its meaning and
|
65 |
HumanMessage(content=text)
|
66 |
]
|
67 |
response = translator(messages)
|
@@ -71,27 +78,30 @@ def retry_translate_text(text: str, max_retries=3) -> str:
|
|
71 |
time.sleep(2)
|
72 |
return "Translation failed. Please try again later."
|
73 |
|
74 |
-
def
|
75 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
glossary_items = tuple(sorted(glossary.items()))
|
77 |
glossary_terms, glossary_embeddings = compute_glossary_embeddings_cached(glossary_items)
|
78 |
|
79 |
sentences = nltk.tokenize.sent_tokenize(text) if not nlp else [sent.text for sent in nlp(text).sents]
|
80 |
-
|
81 |
def process_sentence(sentence):
|
82 |
"""Processes a single sentence with glossary enforcement."""
|
83 |
if not sentence.strip():
|
84 |
return sentence
|
85 |
|
86 |
-
# Dynamic threshold adjustment
|
87 |
-
sentence_length = len(sentence.split())
|
88 |
-
dynamic_threshold = 0.85 if sentence_length > 10 else 0.75 # Adjust threshold based on sentence length
|
89 |
-
|
90 |
sentence_embedding = model.encode(sentence, convert_to_tensor=True)
|
91 |
cos_scores = util.pytorch_cos_sim(sentence_embedding, glossary_embeddings)
|
92 |
max_score, max_idx = torch.max(cos_scores, dim=1)
|
93 |
|
94 |
-
if max_score.item() >=
|
95 |
term = glossary_terms[max_idx]
|
96 |
replacement = glossary[term]
|
97 |
pattern = r'\b' + re.escape(term) + r'\b'
|
@@ -104,31 +114,13 @@ def enforce_glossary(text: str, glossary: dict, threshold: float) -> str:
|
|
104 |
|
105 |
return " ".join(updated_sentences)
|
106 |
|
107 |
-
def validate_translation(original_text, final_text):
|
108 |
-
"""Uses GPT to check if the final translation retains the original meaning."""
|
109 |
-
messages = [
|
110 |
-
SystemMessage(content="You are an AI proofreader. Compare the original and final translation. Does the final translation retain the original meaning?"),
|
111 |
-
HumanMessage(content=f"Original Text: {original_text}\nFinal Translation: {final_text}\n")
|
112 |
-
]
|
113 |
-
response = translator(messages)
|
114 |
-
return response.content.strip()
|
115 |
-
|
116 |
-
def grammar_correction(text: str) -> str:
|
117 |
-
"""Uses GPT to fix grammar issues in the final translated text."""
|
118 |
-
messages = [
|
119 |
-
SystemMessage(content="You are a French grammar expert. Correct any grammatical mistakes in the following text."),
|
120 |
-
HumanMessage(content=text)
|
121 |
-
]
|
122 |
-
response = translator(messages)
|
123 |
-
return response.content.strip()
|
124 |
-
|
125 |
# Streamlit UI
|
126 |
-
st.title("
|
127 |
-
st.write("This version
|
128 |
|
129 |
input_text = st.text_area("Enter text to translate:")
|
130 |
glossary_file = st.file_uploader("Upload Glossary File (Excel)", type=["xlsx"])
|
131 |
-
threshold = st.slider("Semantic Matching Threshold", 0.5, 1.0, 0.
|
132 |
|
133 |
if st.button("Translate"):
|
134 |
if not input_text.strip():
|
@@ -137,13 +129,18 @@ if st.button("Translate"):
|
|
137 |
st.error("Glossary file is required.")
|
138 |
else:
|
139 |
glossary = load_glossary_from_excel(glossary_file)
|
140 |
-
translated_text = retry_translate_text(input_text)
|
141 |
-
glossary_enforced_text = enforce_glossary(translated_text, glossary, threshold)
|
142 |
-
corrected_text = grammar_correction(glossary_enforced_text)
|
143 |
-
validation_result = validate_translation(input_text, corrected_text)
|
144 |
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
56 |
embeddings = model.encode(glossary_terms, convert_to_tensor=True)
|
57 |
return glossary_terms, embeddings
|
58 |
|
59 |
+
def enforce_glossary_pre_translation(text: str, glossary: dict) -> str:
|
60 |
+
"""Forces glossary terms in the English text before translation."""
|
61 |
+
for eng_term, fr_term in glossary.items():
|
62 |
+
pattern = r'\b' + re.escape(eng_term) + r'\b'
|
63 |
+
text = re.sub(pattern, eng_term.upper(), text, flags=re.IGNORECASE) # Capitalize for emphasis
|
64 |
+
return text
|
65 |
+
|
66 |
def retry_translate_text(text: str, max_retries=3) -> str:
|
67 |
"""Retries translation in case of API failure."""
|
68 |
for attempt in range(max_retries):
|
69 |
try:
|
70 |
messages = [
|
71 |
+
SystemMessage(content="You are a professional translator. Translate the following text to Canadian French while preserving its meaning and respecting these specific terms."),
|
72 |
HumanMessage(content=text)
|
73 |
]
|
74 |
response = translator(messages)
|
|
|
78 |
time.sleep(2)
|
79 |
return "Translation failed. Please try again later."
|
80 |
|
81 |
+
def enforce_glossary_post_translation(text: str, glossary: dict) -> str:
|
82 |
+
"""Ensures glossary terms are applied after translation."""
|
83 |
+
for eng_term, fr_term in glossary.items():
|
84 |
+
pattern = r'\b' + re.escape(eng_term.upper()) + r'\b'
|
85 |
+
text = re.sub(pattern, fr_term, text, flags=re.IGNORECASE)
|
86 |
+
return text
|
87 |
+
|
88 |
+
def enforce_glossary_with_semantics(text: str, glossary: dict, threshold: float) -> str:
|
89 |
+
"""Applies glossary replacements based on semantic similarity."""
|
90 |
glossary_items = tuple(sorted(glossary.items()))
|
91 |
glossary_terms, glossary_embeddings = compute_glossary_embeddings_cached(glossary_items)
|
92 |
|
93 |
sentences = nltk.tokenize.sent_tokenize(text) if not nlp else [sent.text for sent in nlp(text).sents]
|
94 |
+
|
95 |
def process_sentence(sentence):
|
96 |
"""Processes a single sentence with glossary enforcement."""
|
97 |
if not sentence.strip():
|
98 |
return sentence
|
99 |
|
|
|
|
|
|
|
|
|
100 |
sentence_embedding = model.encode(sentence, convert_to_tensor=True)
|
101 |
cos_scores = util.pytorch_cos_sim(sentence_embedding, glossary_embeddings)
|
102 |
max_score, max_idx = torch.max(cos_scores, dim=1)
|
103 |
|
104 |
+
if max_score.item() >= threshold:
|
105 |
term = glossary_terms[max_idx]
|
106 |
replacement = glossary[term]
|
107 |
pattern = r'\b' + re.escape(term) + r'\b'
|
|
|
114 |
|
115 |
return " ".join(updated_sentences)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
# Streamlit UI
|
118 |
+
st.title("AI-Powered English to Canadian French Translator")
|
119 |
+
st.write("This version ensures glossary priority, improves enforcement, and validates meaning.")
|
120 |
|
121 |
input_text = st.text_area("Enter text to translate:")
|
122 |
glossary_file = st.file_uploader("Upload Glossary File (Excel)", type=["xlsx"])
|
123 |
+
threshold = st.slider("Semantic Matching Threshold", 0.5, 1.0, 0.85)
|
124 |
|
125 |
if st.button("Translate"):
|
126 |
if not input_text.strip():
|
|
|
129 |
st.error("Glossary file is required.")
|
130 |
else:
|
131 |
glossary = load_glossary_from_excel(glossary_file)
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
# Step 1: Enforce Glossary Before Translation
|
134 |
+
pre_translated_text = enforce_glossary_pre_translation(input_text, glossary)
|
135 |
+
|
136 |
+
# Step 2: Translate Text with OpenAI
|
137 |
+
translated_text = retry_translate_text(pre_translated_text)
|
138 |
+
|
139 |
+
# Step 3: Enforce Glossary After Translation
|
140 |
+
post_translated_text = enforce_glossary_post_translation(translated_text, glossary)
|
141 |
|
142 |
+
# Step 4: Apply Semantic Matching to Catch Any Missed Glossary Terms
|
143 |
+
glossary_enforced_text = enforce_glossary_with_semantics(post_translated_text, glossary, threshold)
|
144 |
+
|
145 |
+
st.subheader("Final Translated Text:")
|
146 |
+
st.write(glossary_enforced_text)
|