File size: 9,390 Bytes
3c413eb
 
 
 
 
 
 
3a9ef72
 
 
3c413eb
 
 
 
 
 
c9810d9
3a9ef72
 
 
 
 
 
 
 
292a35c
3a9ef72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9810d9
 
 
 
 
 
 
3a9ef72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9810d9
3a9ef72
 
 
 
c9810d9
 
 
 
 
 
3c413eb
c9810d9
 
 
 
 
 
 
 
3c413eb
c9810d9
 
 
 
3a9ef72
 
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
eb89830
 
 
3c413eb
 
3a9ef72
3c413eb
 
bf2198c
 
 
3c413eb
 
 
 
 
 
 
 
c6a0d24
5009ca6
 
 
c6a0d24
 
 
3c413eb
 
 
bf2198c
3a9ef72
c6a0d24
3c413eb
039cf73
7e429a8
3c413eb
 
 
 
 
 
 
 
 
 
4048622
3c413eb
 
 
 
 
 
 
 
 
c17e51b
3c413eb
4048622
7e429a8
c6a0d24
51fa25e
 
3bef0e5
3c413eb
f86c37f
3fff89b
 
292a35c
 
9fceef7
 
7e429a8
292a35c
 
7e429a8
 
3c413eb
 
 
 
039cf73
3c413eb
 
3d13e8e
16c3b9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image

from transformers import DetrFeatureExtractor, DetrForSegmentation
from transformers.models.detr.feature_extraction_detr import rgb_to_id

import os


def detect_objects(model_name,url_input,image_input,threshold):
    

    if 'maskformer' in model_name:
        if validators.url(url_input):
            image = Image.open(requests.get(url_input, stream=True).raw)
            tb_label = "Confidence Values URL"
            
        elif image_input:
            image = image_input
            tb_label = "Confidence Values Upload"

        # NOTE: Pulling from the example on https://huggingface.co/facebook/maskformer-swin-large-coco
        #     and https://huggingface.co/spaces/ajcdp/Image-Segmentation-Gradio/blob/main/app.py 

        processor = MaskFormerImageProcessor.from_pretrained(model_name)
        model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)

        target_size = (img.shape[0], img.shape[1])
        inputs = preprocessor(images=img, return_tensors="pt")
        with torch.no_grad():
            outputs = model(**inputs)
        outputs.class_queries_logits = outputs.class_queries_logits.cpu()
        outputs.masks_queries_logits = outputs.masks_queries_logits.cpu()
        results = preprocessor.post_process_segmentation(outputs=outputs, target_size=target_size)[0].cpu().detach()
        results = torch.argmax(results, dim=0).numpy()
        results = visualize_instance_seg_mask(results)
        return results, "EMPTY"

        # for result in results:
        #     boxes = result.boxes.cpu().numpy()
        #     for i, box in enumerate(boxes):
        #         # r = box.xyxy[0].astype(int)
        #         coordinates = box.xyxy[0].astype(int)
        #         try:
        #             label = YOLOV8_LABELS[int(box.cls)]
        #         except:
        #             label = "ERROR"
        #         try:
        #             confi = float(box.conf)
        #         except:
        #             confi = 0.0
        #         # final_str_abv += str() + "__" + str(box.cls) + "__" + str(box.conf) + "__" + str(box) + "\n"
        #         if confi >= threshold:
        #             final_str_abv += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"
        #         else:
        #             final_str_else += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"

        # final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else

        # return render, final_str
    elif "detr" in model_name:
        # NOTE: Using the example on https://huggingface.co/facebook/detr-resnet-50-panoptic
        if validators.url(url_input):
            image = Image.open(requests.get(url_input, stream=True).raw)
            tb_label = "Confidence Values URL"
            
        elif image_input:
            image = image_input
            tb_label = "Confidence Values Upload"

        feature_extractor = DetrFeatureExtractor.from_pretrained(model_name)
        model = DetrForSegmentation.from_pretrained(model_name)
        inputs = feature_extractor(images=image, return_tensors="pt")

        outputs = model(**inputs)

        # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
        processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
        result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
        
        # the segmentation is stored in a special-format png
        panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
        panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
        # retrieve the ids corresponding to each mask
        panoptic_seg_id = rgb_to_id(panoptic_seg)

        

        return gr.Image.update(), "EMPTY"
        
       
        
        #Visualize prediction
        viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
        
        # return [viz_img, processed_outputs]
        # print(type(viz_img))
    
        final_str_abv = ""
        final_str_else = ""
        for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True):
            box = [round(i, 2) for i in box.tolist()]
            if score.item() >= threshold:
                final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
            else:
                final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
    
        # https://docs.python.org/3/library/string.html#format-examples
        final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else
            
        return viz_img, final_str
    else:
        raise NameError(f"Model name {model_name} not prepared")
        
def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def set_example_url(example: list) -> dict:
    return gr.Textbox.update(value=example[0])


title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""

description = """
Links to HuggingFace Models:

- [facebook/detr-resnet-50-panoptic](https://huggingface.co/facebook/detr-resnet-50-panoptic)  
- [facebook/detr-resnet-101-panoptic](https://huggingface.co/facebook/detr-resnet-101-panoptic)
- [facebook/maskformer-swin-large-coco](https://huggingface.co/facebook/maskformer-swin-large-coco)
"""

models = ["facebook/detr-resnet-50-panoptic","facebook/detr-resnet-101-panoptic","facebook/maskformer-swin-large-coco"]
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]

# twitter_link = """
# [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
# """

css = '''
h1#title {
  text-align: center;
}
'''
demo = gr.Blocks(css=css)


def changing():
    # https://discuss.huggingface.co/t/how-to-programmatically-enable-or-disable-components/52350/4
    return gr.Button.update(interactive=True), gr.Button.update(interactive=True)
        


with demo:
    gr.Markdown(title)
    gr.Markdown(description)
    # gr.Markdown(twitter_link)
    options = gr.Dropdown(choices=models,label='Select Image Segmentation Model',show_label=True)
    
    slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')

    
    
    with gr.Tabs():
        with gr.TabItem('Image URL'):
            with gr.Row():
                url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
                img_output_from_url = gr.Image(shape=(650,650))
                
            with gr.Row():
                example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
            
            url_but = gr.Button('Detect', interactive=False)
     
        with gr.TabItem('Image Upload'):
            with gr.Row():
                img_input = gr.Image(type='pil')
                img_output_from_upload= gr.Image(shape=(650,650))
                
            with gr.Row(): 
                example_images = gr.Dataset(components=[img_input],
                                            samples=[[path.as_posix()]
                                                     for path in sorted(pathlib.Path('images').rglob('*.JPG'))]) # Can't get case_sensitive to work
                
            img_but = gr.Button('Detect', interactive=False)

    
    # output_text1 = gr.outputs.Textbox(label="Confidence Values")
    output_text1 = gr.components.Textbox(label="Confidence Values")
    # https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this
    
    options.change(fn=changing, inputs=[], outputs=[img_but, url_but])

    
    url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
    img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
    # url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
    # img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
    
    # url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
    # img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)

    
    example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
    example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
    

    # gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")

    
# demo.launch(enable_queue=True)
demo.launch() #removed (share=True)