Working on script to test how the functions work
Browse files- understand.py +35 -0
understand.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import requests, validators
|
3 |
+
import torch
|
4 |
+
import pathlib
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
|
9 |
+
from transformers.models.detr.feature_extraction_detr import rgb_to_id
|
10 |
+
|
11 |
+
TEST_IMAGE = Image.open(r"images/Test_Street_VisDrone.JPG")
|
12 |
+
MODEL_NAME_DETR = "facebook/detr-resnet-50-panoptic"
|
13 |
+
MODEL_NAME_MASKFORMER = "facebook/maskformer-swin-large-coco"
|
14 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
#######
|
17 |
+
# Parameters
|
18 |
+
#######
|
19 |
+
image = TEST_IMAGE
|
20 |
+
model_name = MODEL_NAME_MASKFORMER
|
21 |
+
|
22 |
+
# Starting with MaskFormer
|
23 |
+
|
24 |
+
processor = MaskFormerImageProcessor.from_pretrained(model_name)
|
25 |
+
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)
|
26 |
+
|
27 |
+
model.to(DEVICE)
|
28 |
+
|
29 |
+
# img = np.array(TEST_IMAGE)
|
30 |
+
|
31 |
+
inputs = processor(images=image, return_tensors="pt")
|
32 |
+
inputs.to(DEVICE)
|
33 |
+
|
34 |
+
|
35 |
+
outputs = model(**inputs)
|